搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

散斑场的随机波数及其参量非线性效应

杨春林

引用本文:
Citation:

散斑场的随机波数及其参量非线性效应

杨春林

Random wavenumber and nonlinear parametric effect of speckle field

Yang Chun-Lin
PDF
HTML
导出引用
  • 散斑光场在非线性领域有特别的作用, 它可用于抑制强光条件下的非线性过程. 为了深入了解散斑的参量非线性作用机制, 引入了具有波数失配的耦合波方程, 讨论了方程的解, 波数或位相匹配条件, 波数不完全匹配时的增益阈值条件, 以及完整解的待定系数. 待定系数由边界场决定, 如果边界的三个非线性波的复振幅都不为零, 还存在边界位相匹配条件, 满足该条件的待定系数最大. 散斑光场的波数随机起伏, 需要分段处理, 这种波数随机起伏还会破坏边界位相匹配条件, 从而抑制非线性增益. 理论研究和数值计算的结果一致表明了散斑对受激布里渊散射参量过程的抑制作用.
    Speckle field is a relatively common phenomenon. But the speckle has special application value in nonlinear optical domain because it can be used to suppress different nonlinear processes that are caused by high power laser. To enhance the suppression capability, it is necessary to reveal the basic mechanism of the speckle parameter nonlinear optical interaction process. In this work, the coupling wave equation under the wave number mismatch condition is used to analyze the parameter process of speckles field. The solving process of the coupling wave equation is introduced in detail. And the wave number or phase matching condition is fully discussed. Furthermore, the threshold of the nonlinear gain is analyzed when the wave number does not fully meet the matching condition. To describe the solution of the coupling wave equation more clearly, the undetermined coefficient of the exact analytical solution is discussed. Since the boundary field will affect the confirmation of the undetermined coefficient, the characteristic of boundary field should be analyzed first. The nonlinear process of the speckle field is a three-wave interaction process. The different boundary conditions will affect the three-wave interaction process. And it is found that if the complex amplitudes of the three waves at the boundary are not zero, the undetermined coefficient will be changed with the phrase parameters of the three waves. To achieve the maximum value, the boundary waves must meet the phase matching condition. The wave number of the speckle filed is not an invariant, because of its random distribution characteristic. Therefore, during the analysis of the three-wave interaction process, the segment handling method is used to ensure the effective solving of the first order coupling wave equation. On the other hand, the randomly fluctuation of the wave number destroys the phase matching condition of the boundary. It is just through the basic mechanism that the speckle field can be used to suppress the nonlinear gain of high-power optical field. Both the theoretical analyses and the numerical calculation results show that the speckle field has good suppression effect for some typical nonlinear parameter process, such as stimulated Brillouin scattering.
      通信作者: 杨春林, yangchunlin@hotmail.com
      Corresponding author: Yang Chun-Lin, yangchunlin@hotmail.com
    [1]

    叶佩弦 2007 非线性光学物理 (北京: 北京大学出版社) 第91页

    Ye P X 2007 Nonlinear Optical Physics (Beijing: Beijing University Press) p91

    [2]

    Divol L 2007 Phys. Rev. Lett. 99 155003Google Scholar

    [3]

    约瑟夫. 古德曼著(曹其智, 陈家璧 译) 2007 光学中的散斑现象理论与应用 (北京: 科学出版社) 第1页

    Goodman J W (translated by Cao Q Z, Chen JB) 2009 Speckle Phenomena in Optics-Theory and Applications (Beijing: Beijing Science Press) p1

    [4]

    Froula D H, Divol L, London R A, Berger R L, Dppner T, Meezan N B, Ross J S, Suter L J, Sorce C, Glenzer S H 2009 Phys. Rev. Lett. 103 045006Google Scholar

    [5]

    Neumayer P, Berger R L, Callahan D, Divol L, Froula D H, London R A, MacGowan B J, Meezan N B, Michel P A, Ross J S, Sorce C, Widmann K, Suter L J, Glenzer S H 2008 Phys. Plasmas 15 056307Google Scholar

    [6]

    项江, 郑春阳, 刘占军 2010 物理学报 59 8717Google Scholar

    Xiang J, Zheng C Y, Liu Z J 2010 Acta. Phys. Sin. 59 8717Google Scholar

    [7]

    Wang Y, Yuan C X, Gao R L, Zhou Z X 2012 Phys. Plasmas. 19 103109Google Scholar

    [8]

    Rosenbluth M N 1972 Phys. Rev. Lett. 29 565Google Scholar

    [9]

    Liu C S, Rosenbluth M N, White R B 1974 Phys. Fluids 17 1211Google Scholar

    [10]

    汪卫星, 常铁强, 苏秀敏 1994 物理学报 43 766Google Scholar

    Wang W X, Chang T Q, Shu X M 1994 Acta. Phys. Sin. 43 766Google Scholar

    [11]

    McKinstrie C J, Li J S, Giacone R E, Vu H X 1996 Phys. Plasmas 3 2686Google Scholar

    [12]

    Eliseev V V, Rozmus W, Tikhonchuk V T, Capjack C E 1996 Phys. Plasmas 3 2215Google Scholar

    [13]

    Kruer W L, Wilks S C, Afeyan B B, Kirkwood R K 1996 Phys. Plasmas 3 382Google Scholar

    [14]

    Follett R K, Edgell D H, Froula D H, Goncharov V N, Igumenshchev I V, Shaw J G, Myatt J F 2017 Phys. Plasmas 91 031104

  • 图 1  CPP产生散斑的光路示意图和CPP面型

    Fig. 1.  The speckles generated light path by CPP and the Surface shape of a CPP.

    图 2  散斑场的纵向振幅和波数(差)变化. 蓝色虚线是散斑场的振幅, 红色实线是波数(差)

    Fig. 2.  Amplitude and wavenumber of speckles in longitudinal. The blue dot line is amplitude and the red solid line is wavenumber.

    图 3  散斑的波数差(a)和增益曲线(b)对比

    Fig. 3.  The wavenumber difference of speckles (a) vs. the gain curve (b) of parametric process.

    图 4  SBS后向散射光沿z轴的增长 (a) 增益系数g = 5×103/m的情况; (b) 增益系数g = 2×104/m的情况

    Fig. 4.  Gain curves of SBS backscatter light along axis z: (a) Gain coefficient g = 5×103/m; (b) gain coefficient g = 2×104/m

  • [1]

    叶佩弦 2007 非线性光学物理 (北京: 北京大学出版社) 第91页

    Ye P X 2007 Nonlinear Optical Physics (Beijing: Beijing University Press) p91

    [2]

    Divol L 2007 Phys. Rev. Lett. 99 155003Google Scholar

    [3]

    约瑟夫. 古德曼著(曹其智, 陈家璧 译) 2007 光学中的散斑现象理论与应用 (北京: 科学出版社) 第1页

    Goodman J W (translated by Cao Q Z, Chen JB) 2009 Speckle Phenomena in Optics-Theory and Applications (Beijing: Beijing Science Press) p1

    [4]

    Froula D H, Divol L, London R A, Berger R L, Dppner T, Meezan N B, Ross J S, Suter L J, Sorce C, Glenzer S H 2009 Phys. Rev. Lett. 103 045006Google Scholar

    [5]

    Neumayer P, Berger R L, Callahan D, Divol L, Froula D H, London R A, MacGowan B J, Meezan N B, Michel P A, Ross J S, Sorce C, Widmann K, Suter L J, Glenzer S H 2008 Phys. Plasmas 15 056307Google Scholar

    [6]

    项江, 郑春阳, 刘占军 2010 物理学报 59 8717Google Scholar

    Xiang J, Zheng C Y, Liu Z J 2010 Acta. Phys. Sin. 59 8717Google Scholar

    [7]

    Wang Y, Yuan C X, Gao R L, Zhou Z X 2012 Phys. Plasmas. 19 103109Google Scholar

    [8]

    Rosenbluth M N 1972 Phys. Rev. Lett. 29 565Google Scholar

    [9]

    Liu C S, Rosenbluth M N, White R B 1974 Phys. Fluids 17 1211Google Scholar

    [10]

    汪卫星, 常铁强, 苏秀敏 1994 物理学报 43 766Google Scholar

    Wang W X, Chang T Q, Shu X M 1994 Acta. Phys. Sin. 43 766Google Scholar

    [11]

    McKinstrie C J, Li J S, Giacone R E, Vu H X 1996 Phys. Plasmas 3 2686Google Scholar

    [12]

    Eliseev V V, Rozmus W, Tikhonchuk V T, Capjack C E 1996 Phys. Plasmas 3 2215Google Scholar

    [13]

    Kruer W L, Wilks S C, Afeyan B B, Kirkwood R K 1996 Phys. Plasmas 3 382Google Scholar

    [14]

    Follett R K, Edgell D H, Froula D H, Goncharov V N, Igumenshchev I V, Shaw J G, Myatt J F 2017 Phys. Plasmas 91 031104

  • [1] 尹君, 王少飞, 张俊杰, 谢佳谌, 陈宏宇, 贾源, 胡徐锦, 于凌尧. 基于动态散斑照明的宽场荧光显微技术理论研究. 物理学报, 2021, 70(23): 238701. doi: 10.7498/aps.70.20211022
    [2] 杨春林. 等离子体中散斑光场的传输特性. 物理学报, 2018, 67(8): 085201. doi: 10.7498/aps.67.20171795
    [3] 陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利. 基于全相位谱分析的剪切光束成像目标重构. 物理学报, 2017, 66(2): 024203. doi: 10.7498/aps.66.024203
    [4] 宋洪胜, 刘桂媛, 张宁玉, 庄桥, 程传福. 大散射角散斑场中有关相位奇异新特性的研究. 物理学报, 2015, 64(8): 084210. doi: 10.7498/aps.64.084210
    [5] 宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福. 菲涅耳深区散斑强度统计特性及演化. 物理学报, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [6] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究. 物理学报, 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [7] 刘建辉, 柳强, 巩马理. 光参量过程中的逆转换问题. 物理学报, 2011, 60(2): 024215. doi: 10.7498/aps.60.024215
    [8] 赵冬梅, 李志刚, 郭龑强, 李刚, 王军民, 张天才. 弱抽运下光学参量过程中压缩真空场的光子统计性质. 物理学报, 2010, 59(9): 6231-6236. doi: 10.7498/aps.59.6231
    [9] 常宏, 杨福桂, 董磊, 王安廷, 谢建平, 明海. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响. 物理学报, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [10] 宋洪胜, 程传福, 滕树云, 刘曼, 刘桂媛, 张宁玉. 参考光干涉提取复振幅的散斑统计函数的实验研究. 物理学报, 2009, 58(11): 7654-7661. doi: 10.7498/aps.58.7654
    [11] 宋洪胜, 程传福, 刘曼, 滕树云, 张宁玉. 散斑场相位涡旋及其传播特性的实验研究. 物理学报, 2009, 58(6): 3887-3896. doi: 10.7498/aps.58.3887
    [12] 王少凯, 任继刚, 金贤敏, 杨 彬, 杨 冬, 彭承志, 蒋 硕, 王向斌. 自由空间量子通讯实验中纠缠源的研制. 物理学报, 2008, 57(3): 1356-1359. doi: 10.7498/aps.57.1356
    [13] 季玲玲, 吴令安. 光学超晶格中级联参量过程制备纠缠光子对. 物理学报, 2005, 54(2): 736-741. doi: 10.7498/aps.54.736
    [14] 赵超樱, 谭维翰. 位相不匹配情形Fokker-Planck方程的解及其在准位相匹配参量放大中的应用. 物理学报, 2005, 54(6): 2723-2730. doi: 10.7498/aps.54.2723
    [15] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 准位相匹配铌酸锂波导倍频特性分析与优化设计. 物理学报, 2002, 51(3): 565-572. doi: 10.7498/aps.51.565
    [16] 李永民, 樊巧云, 张宽收, 谢常德, 彭堃墀. 三共振准相位匹配光学参量振荡器反射抽运场的正交位相压缩. 物理学报, 2001, 50(8): 1492-1495. doi: 10.7498/aps.50.1492
    [17] 李翔, 郭光灿. 参量过程中的带间脉冲流. 物理学报, 2000, 49(4): 702-707. doi: 10.7498/aps.49.702
    [18] 张培林. 双光子激发钾5d2DJ态的光波混频和参量过程. 物理学报, 1985, 34(8): 1040-1048. doi: 10.7498/aps.34.1040
    [19] 郭奕理, 姚敏言, 李港, 丁海曙, 娄采云. 高压H2的SRS中的参量与非参量过程. 物理学报, 1985, 34(6): 745-751. doi: 10.7498/aps.34.745
    [20] 伍小平, 何世平, 李志超. 空间散斑的运动规律. 物理学报, 1980, 29(9): 1142-1150. doi: 10.7498/aps.29.1142
计量
  • 文章访问数:  756
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-30
  • 修回日期:  2023-09-24
  • 上网日期:  2023-10-12
  • 刊出日期:  2024-01-20

/

返回文章
返回