搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全相位谱分析的剪切光束成像目标重构

陈明徕 罗秀娟 张羽 兰富洋 刘辉 曹蓓 夏爱利

引用本文:
Citation:

基于全相位谱分析的剪切光束成像目标重构

陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利

Sheared-beam imaging target reconstruction based on all-phase spectrum analysis

Chen Ming-Lai, Luo Xiu-Juan, Zhang Yu, Lan Fu-Yang, Liu Hui, Cao Bei, Xia Ai-Li
PDF
导出引用
  • 剪切光束成像技术是一种非传统散斑成像技术,能透过扰动介质对远距离目标进行高分辨率成像.本文提出了一种基于全相位谱分析的图像重构算法,利用全相位谱分析对回波信号数据进行预处理,可有效抑制频谱泄露,校正散斑频谱,消除多种因素引起的频率漂移误差,得到准确的散斑强度和相位差,提高实际成像环境的系统成像能力.仿真结果表明:该图像重构算法有效抑制了频率漂移对成像质量的影响,当信号存在频率误差时,其成像效果大大优于基于传统傅里叶变换谱分析的重构算法.
    Sheared-beam imaging technique is considered to be a non-conventional speckle technique for remote imaging through turbulent medium. In this high resolution imaging technique, three beams are splitted from one laser source and illuminate a remote target simultaneously in shearing distribution. Each beam is modulated by a tiny frequency shift so that these beams can interfere and beat together. The returning speckle signals are received by an array of detectors. The primary algorithm for the signal processing and image reconstruction has been developed previously. However, the reconstructed image is deteriorated by the frequency drifting error and spectrum leakage. These frequency errors are always from the transmitter and scattered signals that are caused by spectrum-shift errors from acoustic-optic modulators, atmospheric turbulence, Doppler effects of moving targets, etc. To solve the problems mentioned above, in this paper we propose a new image reconstruction algorithm based on the all-phase spectrum analysis theory. The all-phase fast Fourier transform (FFT) spectrum analysis theory, which can effectively inhibit spectral leakage and correct speckle spectrum, is used to process the scattered signals. By searching for the accurate positions of the beat frequency components in the transformed frequency domain data, the speckle amplitude and phase difference frames can be extracted accurately. Based on the speckle phase-difference frames, the phase distribution of the wavefront is derived by least-square algorithm. The phase distribution in grid is highly coherent, in which each point is related to the phases of its four nearest neighbors. If an initial phase map is given or preset, the phase map of the wavefront can be estimated accurately by Gauss-Seidel method. Meanwhile, the amplitude of wavefront is obtained by the algebraic operation of speckle amplitude frames. The reconstructed wavefront is inverse Fourier transformed to yield a two dimensional image. A series of speckled images of the same object are averaged to reduce the speckle noise. The proposed method improves the ability of system imaging in the actual imaging environment. Simulation experiments validate the effectiveness of the proposed algorithm, and simulation results show that the proposed image reconstruction algorithm can inhibit the frequency errors from influencing imaging quality when there exist frequency errors in scattered signals. Thus, the imaging quality of the algorithm based on the all-phase FFT method is much better than that of the algorithm based on the traditional FFT method. The substantial usage of this technique is widely spread after the reconstruction algorithm has been optimized.
      通信作者: 陈明徕, shuxuemlchen@163.com
    • 基金项目: 国家自然科学基金(批准号:61505248)资助的课题.
      Corresponding author: Chen Ming-Lai, shuxuemlchen@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505248).
    [1]

    Hutchin R A US Patent 20120162631[2012-6-28]

    [2]

    Hutchin R A US Patent 20120292481[2012-11-22]

    [3]

    Voelz D G 1996 Proc. SPIE 2566 74

    [4]

    Voelz D G, Belsher J F, Ulibarri A L, Gamiz V 2002 Proc. SPIE 4489 35

    [5]

    Hutchin R A 1993 Proc. SPIE 2029 161

    [6]

    Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169

    [7]

    Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150

    [8]

    Olson D F, Long S M, Ulibarri L J 2000 Proc. SPIE 4091 323

    [9]

    Huang X D 2006 Ph. D. Dissertation (Tianjin:Tianjin University) (in Chinese)[黄翔东2006博士学位论文(天津:天津大学)]

    [10]

    Huang X D, Wang Z H 2008 J. Electron. & Inform. Technol. 30 293 (in Chinese)[黄翔东, 王兆华2008电子与信息学报30 293]

    [11]

    Huang X D, Wang Z H 2007 J. Tianjin University 40 883 (in Chinese)[黄翔东, 王兆华2007天津大学学报40 883]

    [12]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese)[曹蓓, 罗秀娟, 陈明徕, 张羽2015物理学报64 124205]

    [13]

    Chen W, Li Q, Wang Y G 2010 Acta Opt. Sin. 30 3441 (in Chinese)[陈卫, 黎全, 王雁桂2010光学学报30 3441]

    [14]

    Landesman B T, Olson D F 1994 Proc. SPIE 2302 14

    [15]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362

    [16]

    Goodman J W 1985 Statistical Optics (New York:John Wiley) p495

    [17]

    Zebker H A, Lu Y 1998 J. Opt. Soc. Am. A 15 586

    [18]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309

    [19]

    Cao B, Luo X J, Si Q D, Zeng Z H 2015 Acta Phys. Sin. 64 054204 (in Chinese)[曹蓓, 罗秀娟, 司庆丹, 曾志红2015物理学报64 054204]

    [20]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese)[张文喜, 相里斌, 孔新新, 李扬, 伍洲, 周志盛2013物理学报62 164203]

  • [1]

    Hutchin R A US Patent 20120162631[2012-6-28]

    [2]

    Hutchin R A US Patent 20120292481[2012-11-22]

    [3]

    Voelz D G 1996 Proc. SPIE 2566 74

    [4]

    Voelz D G, Belsher J F, Ulibarri A L, Gamiz V 2002 Proc. SPIE 4489 35

    [5]

    Hutchin R A 1993 Proc. SPIE 2029 161

    [6]

    Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169

    [7]

    Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150

    [8]

    Olson D F, Long S M, Ulibarri L J 2000 Proc. SPIE 4091 323

    [9]

    Huang X D 2006 Ph. D. Dissertation (Tianjin:Tianjin University) (in Chinese)[黄翔东2006博士学位论文(天津:天津大学)]

    [10]

    Huang X D, Wang Z H 2008 J. Electron. & Inform. Technol. 30 293 (in Chinese)[黄翔东, 王兆华2008电子与信息学报30 293]

    [11]

    Huang X D, Wang Z H 2007 J. Tianjin University 40 883 (in Chinese)[黄翔东, 王兆华2007天津大学学报40 883]

    [12]

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205 (in Chinese)[曹蓓, 罗秀娟, 陈明徕, 张羽2015物理学报64 124205]

    [13]

    Chen W, Li Q, Wang Y G 2010 Acta Opt. Sin. 30 3441 (in Chinese)[陈卫, 黎全, 王雁桂2010光学学报30 3441]

    [14]

    Landesman B T, Olson D F 1994 Proc. SPIE 2302 14

    [15]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362

    [16]

    Goodman J W 1985 Statistical Optics (New York:John Wiley) p495

    [17]

    Zebker H A, Lu Y 1998 J. Opt. Soc. Am. A 15 586

    [18]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309

    [19]

    Cao B, Luo X J, Si Q D, Zeng Z H 2015 Acta Phys. Sin. 64 054204 (in Chinese)[曹蓓, 罗秀娟, 司庆丹, 曾志红2015物理学报64 054204]

    [20]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese)[张文喜, 相里斌, 孔新新, 李扬, 伍洲, 周志盛2013物理学报62 164203]

  • [1] 杨春林. 散斑场的随机波数及其参量非线性效应. 物理学报, 2024, 73(2): 024204. doi: 10.7498/aps.73.20231235
    [2] 陈明徕, 马彩文, 刘辉, 罗秀娟, 冯旭斌, 岳泽霖, 赵晶. 基于快速采样的剪切光束成像图像重构算法. 物理学报, 2024, 73(2): 024202. doi: 10.7498/aps.73.20231254
    [3] 陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶. 剪切光束成像技术稀疏重构算法. 物理学报, 2022, 71(19): 194201. doi: 10.7498/aps.71.20220494
    [4] 尹君, 王少飞, 张俊杰, 谢佳谌, 陈宏宇, 贾源, 胡徐锦, 于凌尧. 基于动态散斑照明的宽场荧光显微技术理论研究. 物理学报, 2021, 70(23): 238701. doi: 10.7498/aps.70.20211022
    [5] 杨春林. 等离子体中散斑光场的传输特性. 物理学报, 2018, 67(8): 085201. doi: 10.7498/aps.67.20171795
    [6] 兰富洋, 罗秀娟, 樊学武, 张羽, 陈明徕, 刘辉, 贾辉. 上行链路大气波前畸变对剪切光束成像技术的影响. 物理学报, 2018, 67(20): 204201. doi: 10.7498/aps.67.20181144
    [7] 李建欣, 柏财勋, 刘勤, 沈燕, 徐文辉, 许逸轩. 新型干涉高光谱成像系统的光束剪切特性分析. 物理学报, 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [8] 陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓. 四光束剪切相干成像目标重构算法研究. 物理学报, 2017, 66(11): 114201. doi: 10.7498/aps.66.114201
    [9] 兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉. 剪切光束成像技术对纵深目标的成像. 物理学报, 2017, 66(20): 204202. doi: 10.7498/aps.66.204202
    [10] 宋洪胜, 刘桂媛, 张宁玉, 庄桥, 程传福. 大散射角散斑场中有关相位奇异新特性的研究. 物理学报, 2015, 64(8): 084210. doi: 10.7498/aps.64.084210
    [11] 曹蓓, 罗秀娟, 陈明徕, 张羽. 相干场成像全相位目标直接重构法. 物理学报, 2015, 64(12): 124205. doi: 10.7498/aps.64.124205
    [12] 郑伟花, 贾虎. 水下高斯界面背向散射超声散斑场的相位奇异. 物理学报, 2014, 63(5): 054301. doi: 10.7498/aps.63.054301
    [13] 高越, 符师桦, 蔡玉龙, 程腾, 张青川. 数字剪切散斑干涉法研究铝合金中Portevin-Le Chatelier 带的离面变形行为. 物理学报, 2014, 63(6): 066201. doi: 10.7498/aps.63.066201
    [14] 宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福. 菲涅耳深区散斑强度统计特性及演化. 物理学报, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [15] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究. 物理学报, 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [16] 刘曼, 程传福, 宋洪胜, 刘桂媛, 滕树云. 方形环孔和圆环孔形成的散斑场及相位奇异特性的理论分析和实验验证. 物理学报, 2010, 59(2): 964-972. doi: 10.7498/aps.59.964
    [17] 常宏, 杨福桂, 董磊, 王安廷, 谢建平, 明海. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响. 物理学报, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [18] 宋洪胜, 程传福, 滕树云, 刘曼, 刘桂媛, 张宁玉. 参考光干涉提取复振幅的散斑统计函数的实验研究. 物理学报, 2009, 58(11): 7654-7661. doi: 10.7498/aps.58.7654
    [19] 宋洪胜, 程传福, 刘曼, 滕树云, 张宁玉. 散斑场相位涡旋及其传播特性的实验研究. 物理学报, 2009, 58(6): 3887-3896. doi: 10.7498/aps.58.3887
    [20] 姚焜, 许广宇, 郭光灿, 彭虎, 周佩玲. 双光束干涉产生的动态散斑. 物理学报, 1992, 41(2): 238-243. doi: 10.7498/aps.41.238
计量
  • 文章访问数:  5362
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-01
  • 修回日期:  2016-10-28
  • 刊出日期:  2017-01-20

/

返回文章
返回