搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于快速采样的剪切光束成像图像重构算法

陈明徕 马彩文 刘辉 罗秀娟 冯旭斌 岳泽霖 赵晶

引用本文:
Citation:

基于快速采样的剪切光束成像图像重构算法

陈明徕, 马彩文, 刘辉, 罗秀娟, 冯旭斌, 岳泽霖, 赵晶

Fast sampling based image reconstruction algorithm for sheared-beam imaging

Chen Ming-Lai, Ma Cai-Wen, Liu Hui, Luo Xiu-Juan, Feng Xu-Bin, Yue Ze-Lin, Zhao Jing
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 剪切光束成像是一种非传统地基光学成像技术, 在对位姿快速变化的目标成像时, 为重构目标高分辨率清晰图像, 其成像系统的回波数据采样速率仍不够快. 本文提出一种五光束快速采样的图像重构方法, 通过改变成像系统编码和解码方法, 采用中心对称结构呈“十”字形排布的发射光束阵型, 利用所提的快速图像重构算法, 单次采样的回波数据所能重构的目标图像从1幅增加到8幅, 快速抑制了重构图像的散斑效应. 仿真结果表明, 与传统三光束图像重构方法相比, 获得相同质量图像所需的回波数据采样次数从20次减少至5次, 大幅减少了回波数据采样次数, 提高了回波数据采样速率.
    Sheared-beam imaging (SBI) is an unconventional ground-based optical imaging technique. It breaks through the traditional optical imaging concept by using three coherent laser beams, which are laterally displaced at the transmit plane, to illuminate the target, reconstructing the target image from echo signals. However, the echo data sampling of the imaging system is still not fast enough to reconstruct the high resolution and clear image of the target when imaging the target that is at rapidly changing position and attitude. In order to solve this problem, in this work an image reconstruction method is proposed based on five-beam fast sampling. An emitted beam array arranged in the cross shape with a central symmetrical structure is proposed, and the encoding and decoding method of the imaging system are changed. With a single exposure, the echo signals carry more spectrum information of the target, and the number of reconstructed images can be increased from 1 to 8, which quickly suppresses the speckle effect of the reconstructed image. Firstly, the principle of the imaging technique based on fast sampling is presented. Then, an image reconstruction algorithm based on fast sampling is studied. Eight groups of phase differences and amplitude information of the target can be extracted from echo signals. The wavefront phases are solved by the least-squares method, and wavefront amplitude can be obtained by the algebraic operation of speckle amplitude. The target image is reconstructed by the inverse Fourier transform. The simulation results show that comparing with the traditional three-beam image reconstruction method, the sampling times of echo data needed to obtain the same quality image are reduced from 20 to 5, which greatly reduces the sampling times of echo data and improves the sampling rate of echo data.
      通信作者: 刘辉, liuhui1@opt.ac.cn
    • 基金项目: 陕西省自然科学基础研究计划(批准号: 2020JQ-438)资助的课题.
      Corresponding author: Liu Hui, liuhui1@opt.ac.cn
    • Funds: Project supported by the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2020JQ-438).
    [1]

    Gao X, Feng L J, Li X Y 2016 Opt. Commun. 380 452Google Scholar

    [2]

    董磊, 卢振武, 刘欣悦 2019 中国光学 12 138Google Scholar

    Dong L, Lu Z W, Liu X Y 2019 Chin. Opt. 12 138Google Scholar

    [3]

    曹蓓, 罗秀娟, 陈明徕, 张羽 2015 物理学报 64 124205Google Scholar

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205Google Scholar

    [4]

    罗秀娟, 刘辉, 张羽, 陈明徕, 兰富洋 2019 中国光学 12 753Google Scholar

    Luo X J, Liu H, Zhang Y, Chen M L, Lan F Y 2019 Chin. Opt. 12 753Google Scholar

    [5]

    Voelz D G 1995 Proc. SPIE 2566 74Google Scholar

    [6]

    Hutchin R A 1993 Proc. SPIE 2029 161Google Scholar

    [7]

    Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169Google Scholar

    [8]

    Landesman B T, Kindilien P, Pierson R E, Matson C L, Mosley D 1997 Opt. Express 1 312Google Scholar

    [9]

    Sica L 1996 Appl. Opt. 35 264Google Scholar

    [10]

    兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉 2017 物理学报 66 204202Google Scholar

    Lan F Y, Luo X J, Chen M L, Zhang Y, Liu H 2017 Acta Phys. Sin. 66 204202Google Scholar

    [11]

    兰富洋, 罗秀娟, 樊学武, 张羽, 陈明徕, 刘辉, 贾辉 2018 物理学报 67 204201Google Scholar

    Lan F Y, Luo X J, Fan X W, Zhang Y, Chen M L, Liu H, Jia H 2018 Acta Phys. Sin. 67 204201Google Scholar

    [12]

    Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150Google Scholar

    [13]

    Olson D F, Long S M, Ulibarri L J 2000 Proc. SPIE 4091 323Google Scholar

    [14]

    陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 物理学报 66 024203Google Scholar

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203Google Scholar

    [15]

    陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓 2017 物理学报 66 114201Google Scholar

    Lu C M, Chen M L, Luo X J, Zhang Y, Liu L, Lan F Y, Cao B 2017 Acta Phys. Sin. 66 114201Google Scholar

    [16]

    陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶 2022 物理学报 71 194201Google Scholar

    Chen M L, Liu H, Zhang Y, Luo X J, Ma C W, Yue Z L, Zhao J 2022 Acta Phys. Sin. 71 194201Google Scholar

    [17]

    Chen M L, Ma C W, Luo X J, Liu H, Zhang Y, Yue Z L, Zhao J 2023 Proc. SPIE 12601 126010M-1Google Scholar

    [18]

    Chen M L, Ma C W, Zhang Y, Liu H, Luo X J, Yue Z L, Zhao J, Sun C 2023 Opt. Eng. 62 073102Google Scholar

    [19]

    Landesman B T, Olson D F 1994 Proc. SPIE 2302 14Google Scholar

    [20]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362Google Scholar

    [21]

    Rider D B, Voelz D G, Bush K A, Magee E 1993 Proc. SPIE 2029 150Google Scholar

    [22]

    Fienup J R 2003 US Patent 006597304B2 [2003-7-22

    [23]

    Gamiz V L 1994 Proc. SPIE 2302 2Google Scholar

    [24]

    Speckle-Based Imaging, Optical Physics Company http://www.opci.com/ technologies/speckle-based-imaging [2017-1-9

    [25]

    Goodman J W 1985 Statistical Optics (New York: John Wiley) p495

    [26]

    Goodman J W 1996 Introduction to Fourier Optics (2nd Ed.) (New York: Mc Graw Hill

    [27]

    Xiang M, Pan A, Zhao Y Y, Fan X W, Zhao H, Li C, Yao B L 2021 Opt. Lett. 46 29Google Scholar

    [28]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309Google Scholar

  • 图 1  SBI系统示意图

    Fig. 1.  Schematic diagram of SBI system.

    图 2  发射平面与目标平面的几何关系

    Fig. 2.  Geometric relations between emission plane and target plane.

    图 3  50次平均后的重构图像 (a)原始图像; (b)快速图像重构算法; (c)传统三光束图像重构算法

    Fig. 3.  Reconstructed images after 50 averages: (a) Original target image; (b) fast image reconstruction algorithm; (c) traditional three-beam image reconstruction algorithm.

    图 4  两种算法的图像Strehl比

    Fig. 4.  Strehl ratios of reconstructed images with both algorithms.

    图 5  两种方法的重构图像 (a)快速图像重构算法; (b)传统三光束图像重构算法

    Fig. 5.  Reconstructed images with both methods: (a) Fast image reconstruction algorithm; (b) traditional three-beam image reconstruction algorithm.

    表 1  成像系统的仿真参数

    Table 1.  Simulation parameters for imaging system.

    仿真参数 取值
    激光波长/nm 532
    目标尺寸 3 m × 3 m
    采样频率/Hz 1200
    采样点数量 9600
    第1光束频移量/MHz 80
    第2光束频移量 80 MHz+20 Hz
    第3光束频移量 80 MHz+80 Hz
    第4光束频移量 80 MHz+180 Hz
    第5光束频移量 80 MHz+220 Hz
    剪切量${s_x} $/m 0.09
    剪切量${s_y} $/m 0.09
    探测器阵列规模 100 × 100
    下载: 导出CSV

    表 2  两种算法所需的数据采样次数

    Table 2.  The number of data sampling times required for both algorithms.

    Strehl比0.73600.76120.78230.80010.81330.8230
    快速图像重构算法的采样次数123456
    传统三光束图像重构算法的采样次数4571120无法
    达到
    下载: 导出CSV
  • [1]

    Gao X, Feng L J, Li X Y 2016 Opt. Commun. 380 452Google Scholar

    [2]

    董磊, 卢振武, 刘欣悦 2019 中国光学 12 138Google Scholar

    Dong L, Lu Z W, Liu X Y 2019 Chin. Opt. 12 138Google Scholar

    [3]

    曹蓓, 罗秀娟, 陈明徕, 张羽 2015 物理学报 64 124205Google Scholar

    Cao B, Luo X J, Chen M L, Zhang Y 2015 Acta Phys. Sin. 64 124205Google Scholar

    [4]

    罗秀娟, 刘辉, 张羽, 陈明徕, 兰富洋 2019 中国光学 12 753Google Scholar

    Luo X J, Liu H, Zhang Y, Chen M L, Lan F Y 2019 Chin. Opt. 12 753Google Scholar

    [5]

    Voelz D G 1995 Proc. SPIE 2566 74Google Scholar

    [6]

    Hutchin R A 1993 Proc. SPIE 2029 161Google Scholar

    [7]

    Voelz D G, Gonglewski J D, Idell P S 1993 Proc. SPIE 2029 169Google Scholar

    [8]

    Landesman B T, Kindilien P, Pierson R E, Matson C L, Mosley D 1997 Opt. Express 1 312Google Scholar

    [9]

    Sica L 1996 Appl. Opt. 35 264Google Scholar

    [10]

    兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉 2017 物理学报 66 204202Google Scholar

    Lan F Y, Luo X J, Chen M L, Zhang Y, Liu H 2017 Acta Phys. Sin. 66 204202Google Scholar

    [11]

    兰富洋, 罗秀娟, 樊学武, 张羽, 陈明徕, 刘辉, 贾辉 2018 物理学报 67 204201Google Scholar

    Lan F Y, Luo X J, Fan X W, Zhang Y, Chen M L, Liu H, Jia H 2018 Acta Phys. Sin. 67 204201Google Scholar

    [12]

    Stahl S M, Kremer R, Fairchild P, Hughes K, Spivey B 1996 Proc. SPIE 2847 150Google Scholar

    [13]

    Olson D F, Long S M, Ulibarri L J 2000 Proc. SPIE 4091 323Google Scholar

    [14]

    陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利 2017 物理学报 66 024203Google Scholar

    Chen M L, Luo X J, Zhang Y, Lan F Y, Liu H, Cao B, Xia A L 2017 Acta Phys. Sin. 66 024203Google Scholar

    [15]

    陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓 2017 物理学报 66 114201Google Scholar

    Lu C M, Chen M L, Luo X J, Zhang Y, Liu L, Lan F Y, Cao B 2017 Acta Phys. Sin. 66 114201Google Scholar

    [16]

    陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶 2022 物理学报 71 194201Google Scholar

    Chen M L, Liu H, Zhang Y, Luo X J, Ma C W, Yue Z L, Zhao J 2022 Acta Phys. Sin. 71 194201Google Scholar

    [17]

    Chen M L, Ma C W, Luo X J, Liu H, Zhang Y, Yue Z L, Zhao J 2023 Proc. SPIE 12601 126010M-1Google Scholar

    [18]

    Chen M L, Ma C W, Zhang Y, Liu H, Luo X J, Yue Z L, Zhao J, Sun C 2023 Opt. Eng. 62 073102Google Scholar

    [19]

    Landesman B T, Olson D F 1994 Proc. SPIE 2302 14Google Scholar

    [20]

    Bush K A, Barnard C C, Voelz D G 1996 Proc. SPIE 2828 362Google Scholar

    [21]

    Rider D B, Voelz D G, Bush K A, Magee E 1993 Proc. SPIE 2029 150Google Scholar

    [22]

    Fienup J R 2003 US Patent 006597304B2 [2003-7-22

    [23]

    Gamiz V L 1994 Proc. SPIE 2302 2Google Scholar

    [24]

    Speckle-Based Imaging, Optical Physics Company http://www.opci.com/ technologies/speckle-based-imaging [2017-1-9

    [25]

    Goodman J W 1985 Statistical Optics (New York: John Wiley) p495

    [26]

    Goodman J W 1996 Introduction to Fourier Optics (2nd Ed.) (New York: Mc Graw Hill

    [27]

    Xiang M, Pan A, Zhao Y Y, Fan X W, Zhao H, Li C, Yao B L 2021 Opt. Lett. 46 29Google Scholar

    [28]

    Idell P S, Gonglewski J D 1990 Opt. Lett. 15 1309Google Scholar

  • [1] 王翔, 周义深, 张轩阁, 陈希浩. 融合注意力机制的卷积网络单像素成像. 物理学报, 2025, 74(8): . doi: 10.7498/aps.74.20250010
    [2] 张海鹏, 赵昌哲, 鞠晓璐, 汤杰, 肖体乔. 基于迭代重构算法改进晶体衍射分光X射线鬼成像的图像质量研究. 物理学报, 2022, 71(7): 074201. doi: 10.7498/aps.71.20211978
    [3] 杨宇祥, 白世展, 林海军, 李建闽, 张甫. 基于multisine激励与整周期采样的多频电阻抗成像系统设计. 物理学报, 2022, 71(5): 058703. doi: 10.7498/aps.71.20211375
    [4] 崔岸婧, 李道京, 吴疆, 周凯, 高敬涵. 频域稀疏采样和激光成像方法. 物理学报, 2022, 71(5): 058705. doi: 10.7498/aps.71.20211408
    [5] 陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶. 剪切光束成像技术稀疏重构算法. 物理学报, 2022, 71(19): 194201. doi: 10.7498/aps.71.20220494
    [6] 杨宇祥, 白世展, 林海军, 李建闽, 张甫. 基于multisine激励与整周期采样的多频电阻抗成像系统设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211375
    [7] 周阳, 张红伟, 钟菲, 郭树旭. 基于自适应阈值方法实现迭代降噪鬼成像. 物理学报, 2018, 67(24): 244201. doi: 10.7498/aps.67.20181240
    [8] 兰富洋, 罗秀娟, 樊学武, 张羽, 陈明徕, 刘辉, 贾辉. 上行链路大气波前畸变对剪切光束成像技术的影响. 物理学报, 2018, 67(20): 204201. doi: 10.7498/aps.67.20181144
    [9] 樊金宇, 高峰, 孔文, 黎海文, 史国华. 多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法. 物理学报, 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [10] 陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓. 四光束剪切相干成像目标重构算法研究. 物理学报, 2017, 66(11): 114201. doi: 10.7498/aps.66.114201
    [11] 兰富洋, 罗秀娟, 陈明徕, 张羽, 刘辉. 剪切光束成像技术对纵深目标的成像. 物理学报, 2017, 66(20): 204202. doi: 10.7498/aps.66.204202
    [12] 陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利. 基于全相位谱分析的剪切光束成像目标重构. 物理学报, 2017, 66(2): 024203. doi: 10.7498/aps.66.024203
    [13] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像. 物理学报, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [14] 孟祥松, 张福民, 曲兴华. 基于重采样技术的调频连续波激光绝对测距高精度及快速测量方法研究. 物理学报, 2015, 64(23): 230601. doi: 10.7498/aps.64.230601
    [15] 陈鹏, 孟晨, 孙连峰, 王成, 杨森. 基于指数再生窗Gabor框架的窄脉冲欠Nyquist采样与重构. 物理学报, 2015, 64(7): 070701. doi: 10.7498/aps.64.070701
    [16] 蔡冬梅, 遆培培, 贾鹏, 王东, 刘建霞. 非均匀采样的功率谱反演大气湍流相位屏的快速模拟. 物理学报, 2015, 64(22): 224217. doi: 10.7498/aps.64.224217
    [17] 于树海, 董磊, 刘欣悦, 凌剑勇. 傅里叶望远镜重构图像虚像分析. 物理学报, 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [18] 曹蓓, 罗秀娟, 司庆丹, 曾志红. 相干场成像四光束相位闭合算法研究. 物理学报, 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
    [19] 郑仕链, 杨小牛, 赵知劲. 用于随机解调器压缩采样的重构判定方法. 物理学报, 2014, 63(22): 228401. doi: 10.7498/aps.63.228401
    [20] 金辉宇, 奚宏生. Lorenz系统族采样同步研究. 物理学报, 2007, 56(5): 2488-2492. doi: 10.7498/aps.56.2488
计量
  • 文章访问数:  2225
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 修回日期:  2023-09-26
  • 上网日期:  2023-10-24
  • 刊出日期:  2024-01-20

/

返回文章
返回