搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应阈值方法实现迭代降噪鬼成像

周阳 张红伟 钟菲 郭树旭

引用本文:
Citation:

基于自适应阈值方法实现迭代降噪鬼成像

周阳, 张红伟, 钟菲, 郭树旭

Iterative denoising of ghost imaging based on adaptive threshold method

Zhou Yang, Zhang Hong-Wei, Zhong Fei, Guo Shu-Xu
PDF
导出引用
  • 为了有效降低传统鬼成像中相关噪声对成像质量的影响,本文提出一种基于最佳阈值的迭代降噪鬼成像.首先在迭代降噪鬼成像的基础上,采用自适应阈值迭代法,在不需要目标先验信息的前提下,找到一个逼近传统鬼成像中相关噪声的阈值,根据得到的阈值构造噪声干扰项.为了每次迭代初值更接近原始目标的透射系数,对其进行二值化,降低重构图像背景噪声对迭代性能的影响.仿真以及实验结果表明,本文提出的方法与传统方法相比,视觉效果以及峰值信噪比值有明显提高.
    Ghost imaging (GI) is an important technique in the fields of quantum imaging and classical optical imaging, and it can solve the problems which are difficult to solve by the traditional imaging techniques in the optically harsh environments. In this paper, we present the iterative denoising of GI based on an adaptive threshold method. This method is abbreviated as IDGI-AT, which takes the advantages of adaptive threshold, differential, binarization and iterative operation method, and can enhance image quality in GI. In addition, this method can reduce the number of measurements. As is well known, the enormous number of measurements and poor reconstruction quality are obstacles to the engineering application of GI. The correlation noise leads to low signal-to-noise ratio and low imaging efficiency in GI as well. Therefore, we establish a denoising model, which can reduce correlation noise and improve reconstruction quality. We first analyze the iterative denoising of ghost imaging (IDGI) theory, and use the adaptive threshold technique to calculate the ideal threshold associated with the correlation noise. It should be noted that the threshold can be obtained by this method under the condition without requiring prior knowledge of the object. Afterwards, we can construct the correlation noise in this denoising model. In the IDGI, the differential ghost imaging (DGI) image is taken as the initial iteration value. We use the adaptive threshold method, which is different from IDGI, to binarize the initial value of each iteration to make it closer to the original object's transmission coefficient. After three iterations, we can obtain a higher-quality reconstruction image. In order to demonstrate that the IDGI-AT is available, a GI experimental system with a pseudo-thermal light source is set up. The considerable simulation and experimental results show the advantage of our scheme in terms of removing reconstruction image background noise. Especially, the visual effects and peak signal-to-noise ratio values are improved in comparison with those from the traditional GI, DGI and IDGI. Besides, we demonstrate the role of binarization in our scheme. For a binary object, the iterative value binarization can achieve better image quality than that in the case without binarizing the iterative initial value. Therefore, this novel method is likely to provide an alternative mean for GI and further pave the way for the application fields of GI, such as lidar, biomedical engineering, etc.
    • 基金项目: 国家自然科学基金(批准号:61627823)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61627823).
    [1]

    Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232

    [2]

    Zhao C, Gong W, Chen M, Li E, Wang H, Xu W, Han S 2012 Appl. Phys. Lett. 101 141123

    [3]

    Zhao S, Wang L, Liang W, Cheng W, Gong L 2015 Opt. Commun. 353 90

    [4]

    Li S, Yao X R, Yu W K, Wu L A, Zhai G J 2013 Opt. Lett. 38 2144

    [5]

    Le M, Wang G, Zheng H, Liu J, Zhou Y, Xu Z 2017 Opt. Express 25 22859

    [6]

    Ren H, Zhao S, Gruska J 2018 Opt. Express 26 550

    [7]

    Brown R H, Twiss R Q 1956 Nature 177 27

    [8]

    Klyshko D N 1988 Sov. Phys. JETP 67 1131

    [9]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [10]

    Bai Y, Han S 2009 J. Mod. Opt. 56 851

    [11]

    Zerom P, Shi Z, O'Sullivan M N, Chan K W C, Krogstad M, Shapiro J H, Boyd R W 2012 Phys. Rev. A 86 063817

    [12]

    Luo K, Huang B, Zheng W, Wu L 2012 Chin. Phys. Lett. 29 074216

    [13]

    Yuan S, Liu X, Zhou X, Li Z, Yang Y 2016 J. Opt. 45 92

    [14]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603

    [15]

    Sun B, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892

    [16]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110

    [17]

    Zhao S, Zhuang P 2014 Chin. Phys. B 23 054203

    [18]

    Huo Y, He H, Chen F 2016 Appl. Opt. 55 3356

    [19]

    Zhang C, Guo S, Cao J, Guan J, Gao F 2014 Opt. Express 22 30063

    [20]

    Gong W 2015 Photon. Res. 3 234

    [21]

    Yao X R, Yu W K, Liu X F, Li L Z, Li M F, Wu L A, Zhai G J 2014 Opt. Express 22 24268

    [22]

    Li G, Yang Z, Zhao Y, Yan R, Liu X, Liu B 2017 Laser Phys. Lett. 14 025207

    [23]

    Li G, Yang Z, Yan R, Zhang A, Wu L A, Qu S 2018 Optik 161 20

    [24]

    Yang C, Wang C, Guan J, Zhang C, Guo S, Gong W, Gao F 2016 Photon. Res. 4 281

  • [1]

    Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232

    [2]

    Zhao C, Gong W, Chen M, Li E, Wang H, Xu W, Han S 2012 Appl. Phys. Lett. 101 141123

    [3]

    Zhao S, Wang L, Liang W, Cheng W, Gong L 2015 Opt. Commun. 353 90

    [4]

    Li S, Yao X R, Yu W K, Wu L A, Zhai G J 2013 Opt. Lett. 38 2144

    [5]

    Le M, Wang G, Zheng H, Liu J, Zhou Y, Xu Z 2017 Opt. Express 25 22859

    [6]

    Ren H, Zhao S, Gruska J 2018 Opt. Express 26 550

    [7]

    Brown R H, Twiss R Q 1956 Nature 177 27

    [8]

    Klyshko D N 1988 Sov. Phys. JETP 67 1131

    [9]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [10]

    Bai Y, Han S 2009 J. Mod. Opt. 56 851

    [11]

    Zerom P, Shi Z, O'Sullivan M N, Chan K W C, Krogstad M, Shapiro J H, Boyd R W 2012 Phys. Rev. A 86 063817

    [12]

    Luo K, Huang B, Zheng W, Wu L 2012 Chin. Phys. Lett. 29 074216

    [13]

    Yuan S, Liu X, Zhou X, Li Z, Yang Y 2016 J. Opt. 45 92

    [14]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603

    [15]

    Sun B, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892

    [16]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110

    [17]

    Zhao S, Zhuang P 2014 Chin. Phys. B 23 054203

    [18]

    Huo Y, He H, Chen F 2016 Appl. Opt. 55 3356

    [19]

    Zhang C, Guo S, Cao J, Guan J, Gao F 2014 Opt. Express 22 30063

    [20]

    Gong W 2015 Photon. Res. 3 234

    [21]

    Yao X R, Yu W K, Liu X F, Li L Z, Li M F, Wu L A, Zhai G J 2014 Opt. Express 22 24268

    [22]

    Li G, Yang Z, Zhao Y, Yan R, Liu X, Liu B 2017 Laser Phys. Lett. 14 025207

    [23]

    Li G, Yang Z, Yan R, Zhang A, Wu L A, Qu S 2018 Optik 161 20

    [24]

    Yang C, Wang C, Guan J, Zhang C, Guo S, Gong W, Gao F 2016 Photon. Res. 4 281

计量
  • 文章访问数:  1906
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-27
  • 修回日期:  2018-08-29
  • 刊出日期:  2019-12-20

基于自适应阈值方法实现迭代降噪鬼成像

  • 1. 吉林大学电子科学与工程学院, 集成光电子学国家重点实验室, 长春 130012;
  • 2. 长春工程学院电气与信息工程学院, 长春 130012
    基金项目: 

    国家自然科学基金(批准号:61627823)资助的课题.

摘要: 为了有效降低传统鬼成像中相关噪声对成像质量的影响,本文提出一种基于最佳阈值的迭代降噪鬼成像.首先在迭代降噪鬼成像的基础上,采用自适应阈值迭代法,在不需要目标先验信息的前提下,找到一个逼近传统鬼成像中相关噪声的阈值,根据得到的阈值构造噪声干扰项.为了每次迭代初值更接近原始目标的透射系数,对其进行二值化,降低重构图像背景噪声对迭代性能的影响.仿真以及实验结果表明,本文提出的方法与传统方法相比,视觉效果以及峰值信噪比值有明显提高.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回