搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光场一阶关联的时域成像

张瑞雪 李洪国 李宗国

引用本文:
Citation:

基于光场一阶关联的时域成像

张瑞雪, 李洪国, 李宗国

Temporal imaging based on first-order field correlation

Zhang Rui-Xue, Li Hong-Guo, Li Zong-Guo
PDF
HTML
导出引用
  • 与通常利用二阶强度关联测量实现时域鬼成像不同, 本文利用时域热光源借助干涉仪通过一阶关联实现时域成像. 基于空域光束的近轴衍射和时域窄带脉冲在色散介质中色散之间的空间-时间二象性, 在时域脉冲响应函数的基础上得到了表征一阶关联时域成像的强度表达式, 分析研究了光源脉冲宽度和相干时间对成像可见度和分辨率的影响. 结果一方面表明基于热光场一阶关联的时域成像在不需要额外色散补偿或消除条件下可以实现时域物体信号的再现, 另一方面表明当光源脉冲宽度一定时, 成像可见度随光源脉冲相干时间的增加而增加, 但是成像分辨率逐渐降低, 其中当光源脉冲宽度约为100 ps, 相干时间约为0.5 ps时, 间隔为20 ps, 宽度为8 ps的时域矩形波型物体的成像质量(兼顾可见度和分辨率)较好. 该结果对于基于热光一阶关联的时域成像在时序信号测量中的应用具有重要意义.
    Different from second-order temporal ghost imaging usually realized by means of second-order correlation measurement, in this paper, we investigate theoretically temporal imaging with temporally thermal light via first-order field correlation based on a Mach-Zehnder interferometer. The paraxial wave equation describing the diffraction of light and the differential equation characterizing the dispersion of light pulse are given. Based on the similarity between these equations, the duality between the paraxial diffraction of the light in the spatial domain and the dispersion of the temporal narrow-band pulse in the dispersive medium (i.e. the space-time duality) is obtained, and the impulse response functions in the time domain for several optical systems are also presented. Then in terms of the space-time duality, we design the scheme for temporal imaging via first-order thermal field correlation based on a Mach-Zehnder interferometer and obtain the intensity expression for first-order temporal imaging according to the temporal impulse response functions, and discuss the influences of the source pulse width and coherence time on the image visibility and resolution. The result shows that the temporal signal can be reconstructed through temporal first-order temporal imaging. Furthermore, when the source’s coherence time is fixed, the image visibility decreases as the pulse width increases. However, the image resolution increases. When the source’s pulse width is fixed, the image visibility increases as the coherence time increases. And yet the image resolution decreases. Specially, when the source’s pulse width is 100 ps and the coherence time is 0.5 ps, the image quality (taking both the visibility and resolution into account) of a temporally rectangular object is satisfactory. In the simulation, the distance and width of the temporal rectangular object are 20 ps and 8 ps, respectively. It is shown that there is a dilemma between the visibility and resolution of first-order temporal imaging which is similar to the result of second-order ghost imaging. Our result discussed herein could be valuable in the reconstruction and detection of temporal signal via first-order temporal ghost imaging with temporally thermal light.
      通信作者: 李宗国, zgli@tjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11604243)和天津市自然科学基金(批准号: 16JCQNJC01600)资助的课题.
      Corresponding author: Li Zong-Guo, zgli@tjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604243) and the Natural Science Foundation of Tianjin, China (Grant No. 16JCQNJC01600).
    [1]

    Padgett M J, Boyd R W 2017 Phil. Trans. R. Soc. A 375 20160233Google Scholar

    [2]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [3]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [4]

    Gatti A, Brambilla E, Bache M, Lugiato L A 2004 Phys. Rev. A 70 013802Google Scholar

    [5]

    Cheng J, Han S 2004 Phys. Rev. Lett. 92 093903Google Scholar

    [6]

    Cao D Z, Xiong J, Wang K G 2005 Phys. Rev. A 71 013801Google Scholar

    [7]

    Valencia A, Scarcelli G, D’ Angelo M, Shih Y H 2005 Phys. Rev. Lett. 94 063601Google Scholar

    [8]

    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L A 2005 Phys. Rev. Lett. 94 183602Google Scholar

    [9]

    Cai Y, Zhu S Y 2005 Phys. Rev. E 71 056607Google Scholar

    [10]

    Zhang D, Zhai Y H, Wu L A, Chen X H 2005 Opt. Lett. 30 2354Google Scholar

    [11]

    Cai Y, Wang F 2007 Opt. Lett. 32 205Google Scholar

    [12]

    Liu X F, Chen X H, Yao X R, Yu W K, Zhai G J, Wu L A 2014 Opt. Lett. 39 2314Google Scholar

    [13]

    Sun B, Edgar M P, Bowman R, Vittert L E, Welsh S, Bowman A, Padgett M J 2013 Science 340 844Google Scholar

    [14]

    Bromberg Y, Katz O, Silberberg Y 2009 Phys. Rev. A 79 053840Google Scholar

    [15]

    Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar

    [16]

    Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D, Han S S 2012 Appl. Phys. Lett. 101 141123Google Scholar

    [17]

    Hong Y, Li E R, Gong W L, Han S S 2015 Opt. Express 23 14541Google Scholar

    [18]

    Chen M, Li E, Gong W L, Bo Z, Xu X, Zhao C, Shen X, Xu W, Han S S 2013 Opt. Photonics J. 3 83Google Scholar

    [19]

    Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett. 121 114801Google Scholar

    [20]

    Cheng J 2009 Opt. Express 17 7916Google Scholar

    [21]

    Cheng J, Lin J 2013 Phys. Rev. A 87 043810Google Scholar

    [22]

    Cao D Z, Xiong J, Zhang S H, Lin L F, Gao L, Wang K G 2008 Appl. Phys. Lett. 92 201102Google Scholar

    [23]

    Chan K W C, O’ Sullivan M N, Boyd R W 2010 Opt. Express 18 5562Google Scholar

    [24]

    Zhang D J, Li H G, Zhao Q L, Wang S, Wang H B, Xiong J, Wang K G 2015 Phys. Rev. A 92 013823Google Scholar

    [25]

    Li H G, Zhang D J, Xu D J, Zhao Q L, Wang S, Wang H B, Xiong J, Wang K G 2015 Phys. Rev. A 92 043816Google Scholar

    [26]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110

    [27]

    仲亚军, 刘娇, 梁文强, 赵生妹 2015 物理学报 64 014202Google Scholar

    Zhong Y J, Liu J, Liang W Q, Zhao S M 2015 Acta Phys. Sin. 64 014202Google Scholar

    [28]

    Gao C, Wang X, Wang Z, Li Z, Du G, Chang F, Yao Z 2017 Phys. Rev. A 96 023838Google Scholar

    [29]

    Cao D H, Li Q H, Zhuang X C, Ren H, Zhang S H, Song X B 2018 Chin. Phys. B 27 123401Google Scholar

    [30]

    Yang H, Wu H, Wang H B, Cao D H, Zhang S H, Xiong J, Wang K 2018 Phys. Rev. A 98 053853Google Scholar

    [31]

    Salem R, Foster M A, Gaeta A L 2013 Adv. Opt. Photonics 5 274Google Scholar

    [32]

    Foster M A, Salem R, Geraghty D F, Turner-Foster A C, Lipson M, Gaeta A L 2008 Nature 456 81Google Scholar

    [33]

    Schröder J, Wang F, Clarke A, Ryckeboer E, Pelusi M , Roelens M A, Eggleton B J 2010 Opt. Commun. 283 2611Google Scholar

    [34]

    Fridman M, Farsi A, Okawachi Y, Gaeta A L 2012 Nature 481 62Google Scholar

    [35]

    Ryczkowski P, Barbier M, Friberg A T, Dudley J M, Genty G 2016 Nat. Photonics 10 167Google Scholar

    [36]

    Shirai T, Setälä T, Friberg A T 2010 J. Opt. Soc. Am. B 27 2549Google Scholar

    [37]

    Setälä T, Shirai T, Friberg A T 2010 Phys. Rev. A 82 043813Google Scholar

    [38]

    Chen Z, Li H, Li Y, Shi J, Zeng G 2013 Opt. Eng. 52 076103Google Scholar

    [39]

    Gao L, Zhang S H, Xiong J, Gan S, Feng L J, Cao D Z, Wang K G 2009 Phys. Rev. A 80 021806Google Scholar

    [40]

    Vabre L, Dubois A, Boccara A C 2002 Opt. Lett. 27 530Google Scholar

    [41]

    Kolner B H 1994 IEEE J. Quant. Electron. 30 1951Google Scholar

    [42]

    Cai Y, Zhu S 2004 Opt. Lett. 29 2716Google Scholar

    [43]

    Qu L, Bai Y, Nan S, Shen Q, Li H, Fu X 2018 Opt. Laser Technol. 104 197Google Scholar

  • 图 1  基于光场一阶关联的时域成像装置示意图

    Fig. 1.  Schematic illustration for first-order temporal imaging.

    图 2  光源相干时间为0.5 ps, 光源脉冲宽度宽度分别为5, 10, 50和100 ps条件下的关联像

    Fig. 2.  The correlated images with different pulse widths of the source 5, 10, 50 and 100 ps, for the source’s coherence time 0.5 ps

    图 3  光源相干时间Tc为0.5 ps时, 成像可见度随光源脉冲宽度的变化曲线

    Fig. 3.  The imaging visibility as a function of the source’s pulse width for the source’s coherence time 0.5 ps

    图 4  光源脉冲宽度为T0 = 100 ps, 光源相干时间Tc分别为0.5, 1.5, 5和10 ps条件下的关联像

    Fig. 4.  The correlated images with different source’s coherence time 0.5, 1.5, 5 and 10 ps, for the source’s pulse width 100 ps

    图 5  光源脉冲宽度为100 ps时, 成像可见度随光源相干时间的变化曲线

    Fig. 5.  The imaging visibility as a function of the source coherence time for the source’s pulse width 100 ps.

  • [1]

    Padgett M J, Boyd R W 2017 Phil. Trans. R. Soc. A 375 20160233Google Scholar

    [2]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [3]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [4]

    Gatti A, Brambilla E, Bache M, Lugiato L A 2004 Phys. Rev. A 70 013802Google Scholar

    [5]

    Cheng J, Han S 2004 Phys. Rev. Lett. 92 093903Google Scholar

    [6]

    Cao D Z, Xiong J, Wang K G 2005 Phys. Rev. A 71 013801Google Scholar

    [7]

    Valencia A, Scarcelli G, D’ Angelo M, Shih Y H 2005 Phys. Rev. Lett. 94 063601Google Scholar

    [8]

    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L A 2005 Phys. Rev. Lett. 94 183602Google Scholar

    [9]

    Cai Y, Zhu S Y 2005 Phys. Rev. E 71 056607Google Scholar

    [10]

    Zhang D, Zhai Y H, Wu L A, Chen X H 2005 Opt. Lett. 30 2354Google Scholar

    [11]

    Cai Y, Wang F 2007 Opt. Lett. 32 205Google Scholar

    [12]

    Liu X F, Chen X H, Yao X R, Yu W K, Zhai G J, Wu L A 2014 Opt. Lett. 39 2314Google Scholar

    [13]

    Sun B, Edgar M P, Bowman R, Vittert L E, Welsh S, Bowman A, Padgett M J 2013 Science 340 844Google Scholar

    [14]

    Bromberg Y, Katz O, Silberberg Y 2009 Phys. Rev. A 79 053840Google Scholar

    [15]

    Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar

    [16]

    Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D, Han S S 2012 Appl. Phys. Lett. 101 141123Google Scholar

    [17]

    Hong Y, Li E R, Gong W L, Han S S 2015 Opt. Express 23 14541Google Scholar

    [18]

    Chen M, Li E, Gong W L, Bo Z, Xu X, Zhao C, Shen X, Xu W, Han S S 2013 Opt. Photonics J. 3 83Google Scholar

    [19]

    Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett. 121 114801Google Scholar

    [20]

    Cheng J 2009 Opt. Express 17 7916Google Scholar

    [21]

    Cheng J, Lin J 2013 Phys. Rev. A 87 043810Google Scholar

    [22]

    Cao D Z, Xiong J, Zhang S H, Lin L F, Gao L, Wang K G 2008 Appl. Phys. Lett. 92 201102Google Scholar

    [23]

    Chan K W C, O’ Sullivan M N, Boyd R W 2010 Opt. Express 18 5562Google Scholar

    [24]

    Zhang D J, Li H G, Zhao Q L, Wang S, Wang H B, Xiong J, Wang K G 2015 Phys. Rev. A 92 013823Google Scholar

    [25]

    Li H G, Zhang D J, Xu D J, Zhao Q L, Wang S, Wang H B, Xiong J, Wang K G 2015 Phys. Rev. A 92 043816Google Scholar

    [26]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110

    [27]

    仲亚军, 刘娇, 梁文强, 赵生妹 2015 物理学报 64 014202Google Scholar

    Zhong Y J, Liu J, Liang W Q, Zhao S M 2015 Acta Phys. Sin. 64 014202Google Scholar

    [28]

    Gao C, Wang X, Wang Z, Li Z, Du G, Chang F, Yao Z 2017 Phys. Rev. A 96 023838Google Scholar

    [29]

    Cao D H, Li Q H, Zhuang X C, Ren H, Zhang S H, Song X B 2018 Chin. Phys. B 27 123401Google Scholar

    [30]

    Yang H, Wu H, Wang H B, Cao D H, Zhang S H, Xiong J, Wang K 2018 Phys. Rev. A 98 053853Google Scholar

    [31]

    Salem R, Foster M A, Gaeta A L 2013 Adv. Opt. Photonics 5 274Google Scholar

    [32]

    Foster M A, Salem R, Geraghty D F, Turner-Foster A C, Lipson M, Gaeta A L 2008 Nature 456 81Google Scholar

    [33]

    Schröder J, Wang F, Clarke A, Ryckeboer E, Pelusi M , Roelens M A, Eggleton B J 2010 Opt. Commun. 283 2611Google Scholar

    [34]

    Fridman M, Farsi A, Okawachi Y, Gaeta A L 2012 Nature 481 62Google Scholar

    [35]

    Ryczkowski P, Barbier M, Friberg A T, Dudley J M, Genty G 2016 Nat. Photonics 10 167Google Scholar

    [36]

    Shirai T, Setälä T, Friberg A T 2010 J. Opt. Soc. Am. B 27 2549Google Scholar

    [37]

    Setälä T, Shirai T, Friberg A T 2010 Phys. Rev. A 82 043813Google Scholar

    [38]

    Chen Z, Li H, Li Y, Shi J, Zeng G 2013 Opt. Eng. 52 076103Google Scholar

    [39]

    Gao L, Zhang S H, Xiong J, Gan S, Feng L J, Cao D Z, Wang K G 2009 Phys. Rev. A 80 021806Google Scholar

    [40]

    Vabre L, Dubois A, Boccara A C 2002 Opt. Lett. 27 530Google Scholar

    [41]

    Kolner B H 1994 IEEE J. Quant. Electron. 30 1951Google Scholar

    [42]

    Cai Y, Zhu S 2004 Opt. Lett. 29 2716Google Scholar

    [43]

    Qu L, Bai Y, Nan S, Shen Q, Li H, Fu X 2018 Opt. Laser Technol. 104 197Google Scholar

  • [1] 陈星宇, 周昕, 白星, 余展, 王玉杰, 李欣家, 刘洋, 孙铭泽. 傅里叶鬼成像与正弦鬼成像的等价性分析. 物理学报, 2023, 72(14): 144202. doi: 10.7498/aps.72.20222317
    [2] 罗小军, 石立华, 张琪, 邱实, 李云, 刘毅诚, 段艳涛. 一次人工触发闪电回击过程的光辐射色散特性分析. 物理学报, 2022, 71(17): 179201. doi: 10.7498/aps.71.20220479
    [3] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [4] 周阳, 张红伟, 钟菲, 郭树旭. 基于自适应阈值方法实现迭代降噪鬼成像. 物理学报, 2018, 67(24): 244201. doi: 10.7498/aps.67.20181240
    [5] 耿易星, 李荣凤, 赵研英, 王大辉, 卢海洋, 颜学庆. 色散对双晶交叉偏振滤波输出特性的影响. 物理学报, 2017, 66(4): 040601. doi: 10.7498/aps.66.040601
    [6] 杨磊, 刘楠楠, 李小英. Sagnac光纤环制备并分离简并关联光子对的实验研究. 物理学报, 2016, 65(19): 194202. doi: 10.7498/aps.65.194202
    [7] 李政颖, 孙文丰, 李子墨, 王洪海. 基于色散补偿光纤的高速光纤光栅解调方法. 物理学报, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [8] 仲亚军, 刘娇, 梁文强, 赵生妹. 针对多散斑图的差分压缩鬼成像方案研究. 物理学报, 2015, 64(1): 014202. doi: 10.7498/aps.64.014202
    [9] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [10] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响. 物理学报, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [11] 孙健明, 于洁, 郭霞生, 章东. 基于分数导数研究高强度聚焦超声的非线性声场. 物理学报, 2013, 62(5): 054301. doi: 10.7498/aps.62.054301
    [12] 刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴令安, 翟光杰. 强度涨落在热光鬼成像中的作用. 物理学报, 2013, 62(18): 184205. doi: 10.7498/aps.62.184205
    [13] 韩庆生, 乔耀军, 李蔚. 基于全光时域分数阶傅里叶变换的光脉冲最小损伤传输新方法. 物理学报, 2011, 60(1): 014219. doi: 10.7498/aps.60.014219
    [14] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生. 物理学报, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [15] 聂志强, 李 岭, 姜 彤, 沈磊剑, 李沛哲, 甘琛利, 宋建平, 张彦鹏, 卢克清. 倒V形四能级亚飞秒极化拍的三光子吸收和色散. 物理学报, 2008, 57(1): 243-251. doi: 10.7498/aps.57.243
    [16] 魏东宾, 周桂耀, 赵兴涛, 苑金辉, 孟 佳, 王海云, 侯蓝田. 一种新型的多包层光子晶体光纤的分析方法. 物理学报, 2008, 57(5): 3011-3015. doi: 10.7498/aps.57.3011
    [17] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性. 物理学报, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [18] 任国斌, 王 智, 娄淑琴, 简水生. 高折射率芯Bragg光纤的色散特性研究. 物理学报, 2004, 53(6): 1862-1867. doi: 10.7498/aps.53.1862
    [19] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤色散补偿特性的数值研究. 物理学报, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
    [20] 李曙光, 刘晓东, 侯蓝田. 一种晶体光纤基模色散特性的矢量法分析. 物理学报, 2004, 53(6): 1873-1879. doi: 10.7498/aps.53.1873
计量
  • 文章访问数:  7327
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-01
  • 修回日期:  2019-03-05
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回