搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹频率编码器

李绍和 李九生 孙建忠

引用本文:
Citation:

太赫兹频率编码器

李绍和, 李九生, 孙建忠

Terahertz frequency coding metasurface

Li Shao-He, Li Jiu-Sheng, Sun Jian-Zhong
PDF
HTML
导出引用
  • 超表面是由亚波长单元组成控制电磁波的人工结构, 研究发现通过对其进行编码排列可实现对电磁波能量的任意控制. 本文利用四种形状相同、尺寸不同的人字形结构单元, 结合其不同相位响应和不同的相位灵敏度设计了太赫兹频率编码器, 通过进行特定编码, 在频率改变的情况下, 实现了对电磁波能量辐射调控. 分别设计了1-bit, 2-bit周期和非周期太赫兹频率编码器, 通过数值计算和仿真模拟验证了上述特性, 而且该结构对太赫兹波辐射主瓣能量有很好的分散作用, 可以有效减少雷达散射截面, 雷达散射截面缩减在θ = 0, φ = 0方向上最大可达29 dB, 在太赫兹波隐身中具有巨大应用价值.
    Metasurface is an artificial structure composed of sub-wavelength units which can realize the arbitrary control of electromagnetic wave energy by coding and arranging metasurface. Unlike the previous coding metasurface with a fixed phase difference of the neighbor coding unit cells, the frequency coding metasurface possesses the main feature that it has the linear change phase difference and different phase sensitivities in the whole working frequency band of the digital unit cells. And it can flexibly control the reflected terahertz waves to the numerous directions by changing the working frequency without redesigning the coding metasurface structure. In this paper, the frequency coding metasurfaces are designed by using four herringbone unit cells with the same shape and different sizes. They have the same phase response at the initial frequency and the different phase sensitivities throughout the frequency band. To describe the frequency coding characteristics of the unit cells, the digital numbers "0" and "1" are used to represent the low phase sensitivity and high phase sensitivity, respectively. Using the frequency digital coding, it can control the electromagnetic wave energy radiations by a single digital coding metasurface without changing the spatial coding pattern. By the combination of the spatial coding and frequency coding, It can manipulate the electromagnetic wave energy radiations more flexibly. We demonstrate 1-bit, 2-bit periodic frequency coding metasurfaces and 2-bit non-periodic frequency coding metasurface. They are all designed in the pre-designed coding sequence to control the electromagnetic wave energy radiations. Numerically simulated results confirm that the frequency coding metasurface can flexibly control the reflected terahertz waves to the numerous directions by changing the working frequency without redesigning the coding metasurface structure. Additionally, the number of the backward diffusion-like scattering beam increases with the change of frequency for the 2-bit random terahertz frequency coding metasurface. It has a good dispersion effect on the main lobe energy of terahertz wave radiation. The radar cross section can be reduced effectively, and the maximum value of radar cross section reduction can reach 29 dB in the direction of θ = 0, φ = 0. It has a great application value in the terahertz wave cloaking.
      通信作者: 李九生, jshli@126.com
    • 基金项目: 国家自然科学基金(批准号: 61871355)和浙江省自然科学基金(批准号: LY18F010016)资助的课题.
      Corresponding author: Li Jiu-Sheng, jshli@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61871355) and the Natural Science Foundation of Zhejiang Pvovince, China (Grant No. LY18F010016).
    [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne P J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Yu N F,Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [3]

    Liu L X, Zhang X Q, Kenney M, Su X Q, Xu N N, Ouyang C M, Shi Y L, Han J G, Zhang W L, Zhang S 2014 Adv. Mater. 26 5031Google Scholar

    [4]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 J. Appl. Phys. 115 063908Google Scholar

    [5]

    Yu Y F, Zhu A Y, Paniagua-Domínguez R, Fu Y H, Luk'Yanchuk B, Kuznetsov A I 2015 Laser Photon. Rev. 9 412Google Scholar

    [6]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zheng A X 2015 J. Appl. Phys. 117 044501Google Scholar

    [7]

    Zhu H F, Semperlotti F 2016 Phys. Rev. Lett. 117 034302Google Scholar

    [8]

    Wang L, Kruk S, Tang H Z, Li T, Kravchenko I, Neshev D N, Kivshar Y S 2016 Optica 3 1504Google Scholar

    [9]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110Google Scholar

    [10]

    Ramli M N, Ping J S, Jamlos M F, Lago H, Aziz N M, Al-Hadi A A 2017 Appl. Phys. A 123 149Google Scholar

    [11]

    Xu H X, Wang G M, Liang J G, Qi M Q, Gao X 2013 IEEE Trans. Antennas Propag. 61 3442Google Scholar

    [12]

    Wan X, Shen X P, Luo Y, Cui T J 2014 Laser Photon. Rev. 8 757Google Scholar

    [13]

    Li Z L, Kim I, Zhang L, Mehmood M Q, Anwar M S, Saleem M, Lee D, Nam K T, Zhang S, Luk'Yanchuk B, Wang Y, Zheng G X, Rho J, Qiu C W 2017A CS Nano 11 9382Google Scholar

    [14]

    Cui TJ, Liu S, Li L L 2016 Light Sci. Appl. 5 e16172Google Scholar

    [15]

    Huang C, Sun B, Pan W B, Cui J H, Wu X Y, Luo X G 2017 Sci. Rep. 7 42302Google Scholar

    [16]

    Li J S, Zhao Z J, Yao J Q 2017 Opt. Express 25 29983Google Scholar

    [17]

    Cui T J, Liu S 2017 Adv. Opt. Mater. 5 1700624Google Scholar

    [18]

    Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M H, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar

    [19]

    Su J X, Cui Y Y, Li Z R, Yan Q L, Che Y X, Yin H C 2018 AIP Adv. 8 035027Google Scholar

    [20]

    Li J S, Yao J Q 2018 IEEE Photon. J. 10 1Google Scholar

  • 图 1  人字形超表面单元结构 (a)单元结构三维立体图; (b)单元结构二维平面图

    Fig. 1.  Herringbone metasurfaceunit structure: (a) Three-dimensional of unit structure; (b) two-simensional of unit structure.

    图 2  4种人字形超表面基本单元结构及其特性曲线 (a) A单元(L = 48 μm); (b) B单元(L = 40 μm); (c) C单元(L = 34 μm); (d) D单元(L = 20 μm); (e) 4种单元在0.4 THz到1.0 THz下的反射率; (f) 4种单元在0.4 THz到1.0 THz下的反射相位

    Fig. 2.  The basic unit structure and characteristic curves of four kinds of herringbone metasurface: (a) Unit A (L = 48 μm); (b) unit B (L = 40 μm); (c) unit C (L = 34 μm); (d) unit D (L = 20 μm); (e) reflectivity of four unitsfrom 0.4 THz to 1.0 THz; (f) reflection phase of four units from 0.4 THz to 1.0 THz.

    图 3  太赫兹频率编码器 (a)以“0-0, 0-1, 0-0, 0-1”序列沿x方向排列1-bit周期太赫兹频率编码器; (b)棋盘式1-bit周期太赫兹频率编码器; (c)以“00-00, 00-01, 00-10, 00-11”序列沿x方向排列2-bit周期太赫兹频率编码器; (d) 2-bit随机太赫兹频率编码器; (e) 2-bit非周期太赫兹频率编码器

    Fig. 3.  The terahertz frequency coding metasurface: (a) 1-bit periodic terahertz frequency coding metasurface arranged along x direction with “0-0, 0-1, 0-0, 0-1” sequence; (b) chessboard 1-bit periodic terahertz frequency coding metasurface; (c) 2-bit periodic terahertz frequency coding metasurface arranged along x direction with “00-00, 00-01, 00-10, 00-11” sequence; (d) 2-bit random terahertz frequency coding metasurface; (e) 2-bit non-periodic terahertz frequency coding metasurface.

    图 4  序列“0-0, 0-1, 0-0, 0-1”沿x方向上周期排布的1-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图

    Fig. 4.  1-bit terahertz frequency coding metasurface arranged periodically along x direction with sequence “0-0,0-1, 0-0, 0-1”: Three-dimensional far-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 5  序列“0-0, 0-1, 0-0, 0-1”沿x方向上周期排布的1-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的二维电场图

    Fig. 5.  1-bit terahertz frequency coding metasurface arranged periodically along x direction with sequence“0-0, 0-1, 0-0, 0-1”: Two-dimensional electric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 7  棋盘式1-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的二维电场图

    Fig. 7.  Chessboard 1-bit terahertz frequency coding metasurface: Two-dimensional electric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 6  棋盘式1-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图

    Fig. 6.  Chessboard 1-bit terahertz frequency coding metasurface: Three-dimensional far-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 8  “00-00, 00-01, 00-10, 00-11”周期排布的2-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图

    Fig. 8.  2-bit periodic terahertz frequency coding metasurfacearranged along x direction with “00-00, 00-01, 00-10, 00-11” sequence: Three-dimensionalfar-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 11  2-bit太赫兹随机频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时二维电场图

    Fig. 11.  2-bit random terahertz frequency coding metasurface:two-dimensional electric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 10  2-bit太赫兹随机频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图

    Fig. 10.  2-bit random terahertz frequency coding metasurface: Three-dimensional far-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 9  “00-00, 00-01, 00-10, 00-11”周期排布的2-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的二维电场图

    Fig. 9.  2-bit periodic terahertz frequency coding metasurface arranged along x direction with “00-00, 00-01, 00-10, 00-11” sequence: Two-dimensionalelectric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 12  2-bit太赫兹随机频率编码器和金属板在1.0 THz处的雷达散射截面分布

    Fig. 12.  Radar cross section distribution of 2-bit terahertz random frequency coding metasurface and metal plate at 1.0 THz.

    图 13  2-bit非周期排布太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图

    Fig. 13.  Fig. 10. 2-bit non-periodic terahertz frequency coding metasurface: Three-dimensional far-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    图 14  2-bit非周期排布太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的二维电场图

    Fig. 14.  Fig. 10. 2-bit non-periodic terahertz frequency coding metasurface: Two-dimensional electric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.

    表 1  1-bit频率编码器单元

    Table 1.  1-bit frequency terahertz coding metasurface unit.

    单元结构α0/(°)1-bit相位响应
    近似α0/(°)空域码α1/(°)·THz–1近似α1/(°)·THz–1频域码编码状态
    154160“0”–312/0.60/0.6“0”“0–0”
    158160“0”–138/0.6180/0.6“1”“0–1”
    下载: 导出CSV
  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne P J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Yu N F,Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [3]

    Liu L X, Zhang X Q, Kenney M, Su X Q, Xu N N, Ouyang C M, Shi Y L, Han J G, Zhang W L, Zhang S 2014 Adv. Mater. 26 5031Google Scholar

    [4]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 J. Appl. Phys. 115 063908Google Scholar

    [5]

    Yu Y F, Zhu A Y, Paniagua-Domínguez R, Fu Y H, Luk'Yanchuk B, Kuznetsov A I 2015 Laser Photon. Rev. 9 412Google Scholar

    [6]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zheng A X 2015 J. Appl. Phys. 117 044501Google Scholar

    [7]

    Zhu H F, Semperlotti F 2016 Phys. Rev. Lett. 117 034302Google Scholar

    [8]

    Wang L, Kruk S, Tang H Z, Li T, Kravchenko I, Neshev D N, Kivshar Y S 2016 Optica 3 1504Google Scholar

    [9]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110Google Scholar

    [10]

    Ramli M N, Ping J S, Jamlos M F, Lago H, Aziz N M, Al-Hadi A A 2017 Appl. Phys. A 123 149Google Scholar

    [11]

    Xu H X, Wang G M, Liang J G, Qi M Q, Gao X 2013 IEEE Trans. Antennas Propag. 61 3442Google Scholar

    [12]

    Wan X, Shen X P, Luo Y, Cui T J 2014 Laser Photon. Rev. 8 757Google Scholar

    [13]

    Li Z L, Kim I, Zhang L, Mehmood M Q, Anwar M S, Saleem M, Lee D, Nam K T, Zhang S, Luk'Yanchuk B, Wang Y, Zheng G X, Rho J, Qiu C W 2017A CS Nano 11 9382Google Scholar

    [14]

    Cui TJ, Liu S, Li L L 2016 Light Sci. Appl. 5 e16172Google Scholar

    [15]

    Huang C, Sun B, Pan W B, Cui J H, Wu X Y, Luo X G 2017 Sci. Rep. 7 42302Google Scholar

    [16]

    Li J S, Zhao Z J, Yao J Q 2017 Opt. Express 25 29983Google Scholar

    [17]

    Cui T J, Liu S 2017 Adv. Opt. Mater. 5 1700624Google Scholar

    [18]

    Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M H, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar

    [19]

    Su J X, Cui Y Y, Li Z R, Yan Q L, Che Y X, Yin H C 2018 AIP Adv. 8 035027Google Scholar

    [20]

    Li J S, Yao J Q 2018 IEEE Photon. J. 10 1Google Scholar

  • [1] 蒋铭阳, 李九生. 弧度与旋转共同诱导相位调控太赫兹超表面. 物理学报, 2025, 74(2): 028701. doi: 10.7498/aps.74.20241465
    [2] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面. 物理学报, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [3] 魏涛, 张玉洁, 葛宏义, 蒋玉英, 吴旭阳, 孙振雨, 季晓迪, 补雨薇, 贾柯柯. 复合相位调控的波束转向可控反射型超表面. 物理学报, 2024, 73(22): 224201. doi: 10.7498/aps.73.20240764
    [4] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [5] 韩俊杰, 钱思贤, 朱传名, 黄志祥, 任信钢, 程光尚. 基于双极化编码超表面生成的双模式轨道角动量. 物理学报, 2023, 72(14): 148101. doi: 10.7498/aps.72.20230457
    [6] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [7] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [8] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [9] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [10] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [11] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [12] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [13] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [14] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [15] 李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才. 探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响. 物理学报, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [16] 王长, 曹俊诚. 太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究. 物理学报, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [17] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [18] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [19] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [20] 范树海, 贺洪波, 邵建达, 范正修, 赵元安. 表面热透镜薄膜吸收测量灵敏度提高方法. 物理学报, 2006, 55(2): 758-763. doi: 10.7498/aps.55.758
计量
  • 文章访问数:  9009
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-07
  • 修回日期:  2019-03-02
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回