搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二氧化钒的太赫兹双频多功能编码超表面

汪静丽 董先超 尹亮 杨志雄 万洪丹 陈鹤鸣 钟凯

引用本文:
Citation:

基于二氧化钒的太赫兹双频多功能编码超表面

汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯

Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface

Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai
PDF
HTML
导出引用
  • 提出了一种基于二氧化钒且工作频段可切换的太赫兹编码超表面. 该编码超表面由金属-二氧化钒复合层、聚酰亚胺介质层、金属反射层构成, 主要通过对顶层双裂环谐振器和十字结构的参数进行设计, 获得其所需的性能; 而二氧化钒材料的引入, 巧妙地使其可工作于双频点, 进而实现不同功能的切换. 仿真结果表明: 当二氧化钒处于绝缘态时, 在f1 = 0.34 THz的圆极化波垂直入射下, 设计的编码超表面可以视为3-bit Pancharatnam-Berry相位编码超表面, 通过对单元中双裂环谐振器设计卷积编码序列, 使该编码超表面具有以特定角度出射拓扑荷数l = ±1涡旋波束的功能; 当二氧化钒处于金属态时, 在f2 = 0.74 THz的正交线极化波垂直入射下, 设计的编码超表面可以视为2-bit各向异性编码超表面, 通过对单元中十字结构分别设计随机编码序列和棋盘格编码序列, 使该编码超表面具有雷达散射截面缩减和波束分束的功能. 其可为太赫兹电磁超材料多功能器件的设计提供一定的参考.
    Terahertz (THz) wave has the advantages of low photon energy, high resolution, large communication bandwidth, etc. It has broad application prospects in security detection, high-resolution imaging, high-speed communication, and other fields. In recent years, as a new way to control THz wave, THz metasurface functional devices have attracted extensive attention of researchers. In this work, vanadium dioxide (VO2), a phase change material, is introduced into the coding metasurface. By regulating a circularly polarized wave and the orthogonal linearly polarized waves independently, a multi-function coding metasurface that can work at dual frequency points is obtained. It is composed of three layers. The top layer is a metal-VO2 composite structure. The middle is a polyimide dielectric layer. The bottom is a metal ground. Under certain conditions, the double split ring resonator (DSRR) and the cross structure in the top layer are relatively independent. Designing the coding sequences for them enable the coding metasurface to have multiple functions. The electromagnetic simulation software CST is used to establish model and conduct simulation, and the obtained results are as follows. When the VO2 is in an insulating state and a circularly polarized wave at 0.34 THz is incident vertically, the characteristics of coding metasurface elements are mainly affected by the DSRR. The DSRR is rotated to meet the requirements of 3-bit Pancharatnam-Berry phase coding. The coding sequence is designed to generate vortex beams with the topological charge l = ±1 at a specific angle. The VO2 state is changed into a metallic state, and the DSRR can be equivalent to a metal ring. When the orthogonal linearly polarized wave at 0.74 THz is incident vertically, the characteristics of coding metasurface elements are mainly affected by the cross structure. Because of its anisotropy, four different 2-bit coding metasurface elements can be obtained respectively by changing the length of the horizontal arm and the vertical arm. The design of appropriate coding sequences can reduce the radar cross section of the x-polarized wave and the beam splitting of the y-polarized wave, and the results have broadband characteristics. Multiple coding sequences can be designed by special characteristics of the coding metasurface, then various expected functions can be realized on the same metasurface. It solves the problem of single function of ordinary metasurface devices to a certain extent, and paves a novel way to the development of THz multi-function systems.
      通信作者: 汪静丽, jlwang@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174199, 61571237)、江苏省自然科学基金(批准号: BK20221330, BK20151509)和横向课题(多功能太赫兹天线的研究)(批准号: 2021外323)资助的课题.
      Corresponding author: Wang Jing-Li, jlwang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174199, 61571237), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20221330, BK20151509), and the Horizontal Program (Study of Multi-Function Terahertz Antennas) (Grant No. 2021external 323).
    [1]

    Zi J C, Xu Q, Wang Q, Tian C X, Li Y F, Zhang X X, Han J G, Zhang W L 2018 Appl. Phys. Lett. 113 101104Google Scholar

    [2]

    Asl A B, Rostami A, Amiri I S 2020 Opt. Quant. Electron. 52 155Google Scholar

    [3]

    Gaufillet F, Marcellin S, Akmansoy É 2016 IEEE J. Sel. Top. Quant. 23 4700605

    [4]

    Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102Google Scholar

    [5]

    Xu W D, Xie L J, Zhu J F, Xu X, Ye Z Z, Wang C, Ma Y G, Ying Y B 2016 ACS Photonics 3 2308Google Scholar

    [6]

    Luo J, Liang J G, Yu Y, Ma H, Yang R S, Fan Y C, Wang G M, Cai T 2020 Adv. Opt. Mater. 8 2000449Google Scholar

    [7]

    Peng L, Jiang X, Li S M 2018 Nanoscale Res. Lett. 13 385Google Scholar

    [8]

    Cheng Z Z, Cheng Y Z 2019 Opt. Commun. 435 178Google Scholar

    [9]

    Zhou C, Peng X Q, Li J S 2020 Optik 216 164937Google Scholar

    [10]

    王羚, 高峰, 滕书华, 谭志国, 张星, 娄军, 邓力 2023 光学学报 43 0324001Google Scholar

    Wang L, Gao F, Teng S H, Tan Z G, Zhang X, Lou J, Deng L 2023 Acta Opt. Sin. 43 0324001Google Scholar

    [11]

    Cui T J, Qi M Q, Wan X, et al. 2014 Light-sci. Appl. 3 e218Google Scholar

    [12]

    Liu S, Zhang L, Yang Q L, et al. 2016 Adv. Opt. Mater. 4 1965Google Scholar

    [13]

    Cheng J, Li J S 2022 Opt. Commun. 524 128758Google Scholar

    [14]

    Bai G D, Ma Q, Iqbal S, et al. 2018 Adv. Opt. Mater. 6 1800657Google Scholar

    [15]

    Zhang P, Li L, Zhang X M, Liu H X, Shi Y 2019 IEEE Access 7 110387Google Scholar

    [16]

    Guo W L, Wang G M, Luo X Y, Hou H S, Chen K, Feng Y J 2020 Ann. Phys-berlin. 532 1900472Google Scholar

    [17]

    Liu S, Cui T J, Xu Q, et al. 2016 Light-sci. Appl. 5 e16076Google Scholar

    [18]

    Li J, Li J T, Yang Y, et al. 2020 Carbon 163 34Google Scholar

    [19]

    Shabanpour J, Sedaghat M, Nayyeri V, Oraizi H, Ramahi O M 2021 Opt. Express 29 14525Google Scholar

    [20]

    Li J, Yang Y, Li J N, Zhang Y T, Zhang Z, Zhao H L, Li F Y, Tang T T, Dai H T, Yao J Q 2020 Adv. Theory. Simul. 3 1900183Google Scholar

    [21]

    Lin Q W, Wong H, Huitema L, Crunteanu A 2022 Adv. Opt. Mater. 10 2101699Google Scholar

    [22]

    Lu C, Lu Q J, Gao M, Lin Y 2021 Nanomaterials 11 114Google Scholar

    [23]

    Li J, Zhang Y T, Li J N, Yan X, Liang L J, Zhang Z, Huang J, Li J H, Yang Y, Yao J Q 2019 Nanoscale 11 5746Google Scholar

    [24]

    Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar

    [25]

    Yu S X, Li L, Shi G M 2016 Appl. Phys. Express 9 082202Google Scholar

    [26]

    Liu X B, Wang Q, Zhang X Q, et al. 2019 Adv. Opt. Mater. 7 1900175Google Scholar

    [27]

    Zhao Y C, Zhang Y X, Shi Q W, Liang S X, Huang W X, Kou W, Yang Z Q 2018 ACS Photonics 5 3040Google Scholar

    [28]

    Shabanpour J 2020 J. Mater. Chem. C 8 7189Google Scholar

    [29]

    Song Z Y, Wei M L, Wang Z S, Cai G X, Liu Y N, Zhou Y G 2019 IEEE Photonics J. 11 4600607Google Scholar

    [30]

    Zhang C H, Zhou G C, Wu J B, et al. 2019 Phys. Rev. Appl. 11 054016Google Scholar

    [31]

    Ran Y Z, Liang J G, Cai T, Li H P 2018 Opt. Commun. 427 101Google Scholar

    [32]

    Liu S, Cui T J, Zhang L, et al. 2016 Adv. Sci. 3 1600156Google Scholar

    [33]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [34]

    Yu P, Besteiro L V, Huang Y J, et al. 2019 Adv. Opt. Mater. 7 1800995Google Scholar

    [35]

    Zhang M, Cao M S, Shu J C, Cao W Q, Li L, Yuan J 2021 Mat. Sci. Eng. R Rep. 145 100627Google Scholar

    [36]

    Liu X, Gao J, Xu L M, Cao X Y, Zhao Y, Li S J 2016 IEEE Antennas Wirel. Propag. Lett. 16 724Google Scholar

    [37]

    Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar

    [38]

    封覃银, 裘国华, 严德贤, 李吉宁, 李向军 2022 中国光学 15 387Google Scholar

    Feng T Y, Qiu G H, Yan D X, Li J N, Li X J 2022 Chin. Opt. 15 387Google Scholar

  • 图 1  编码超表面单元示意图 (a) 单元结构; (b) 旋转结构

    Fig. 1.  Schematic diagram of the coding metasurface unit cell: (a) Unit cell structure; (b) rotation structure.

    图 2  CP波垂直入射下, 编码超表面单元的同极化反射幅度和反射相位 (a) LCP波; (b) RCP波

    Fig. 2.  Co-polarized reflection amplitude and reflection phase of eight unit cells under the vertical incidence of CP wave: (a) LCP wave; (b) RCP wave.

    图 3  8个3-bit编码超表面单元

    Fig. 3.  Eight 3-bit coding metasurface unit cells.

    图 4  2-bit编码超表面单元 (a) x极化波垂直入射, 4种不同lx的单元; (b) y极化波垂直入射, 4种不同ly的单元

    Fig. 4.  2-bit coding metasurface unit cells: (a) Four different lx unit cells under the vertical incidence of x-polarized wave; (b) four different ly unit cells under the vertical incidence of y-polarized wave.

    图 5  LP波垂直入射下, 单元的反射幅度和反射相位 (a) x极化波; (b) y极化波

    Fig. 5.  Reflection amplitude and reflection phase of unit cells under the vertical incidence of LP wave: (a) x-polarized wave; (b) y-polarized wave.

    图 6  编码超表面及部分示意图 (a) 编码序列A示意图; (b) 编码序列B示意图; (c) 编码序列C示意图

    Fig. 6.  Schematic of the coding metasurface and section: (a) Coding sequence A diagram; (b) coding sequence B diagram; (c) coding sequence C diagram.

    图 7  产生垂直涡旋波束的编码序列及3D远场方向图 (a) 编码序列; (b) 3D远场方向图

    Fig. 7.  Coding sequence of vortex beam generation and 3D far-field pattern: (a) Coding sequence; (b) 3D far-field pattern.

    图 8  沿X方向012346701234567···排列的编码序列

    Fig. 8.  Coding sequence arranged in X direction according to 012346701234567···

    图 9  产生异常反射角度为42.26°的涡旋波束编码序列A

    Fig. 9.  Coding sequence A for generating vortex beam with abnormal reflection angle of 42.26°.

    图 10  CP波垂直入射下编码超表面的3D远场方向图和2D远场方向图 (a) LCP波垂直入射下的3D远场方向图; (b) RCP波垂直入射下的3D远场方向图; (c) LCP波垂直入射下的2D远场方向图; (d) RCP波垂直入射下的2D远场方向图

    Fig. 10.  3D far-field pattern and 2D far-field pattern of coding metasurface under the vertical incidence of CP wave: (a) 3D far-field pattern under the vertical incidence of LCP wave; (b) 3D far-field pattern under the vertical incidence of RCP wave; (c) 2D far-field pattern under the vertical incidence of LCP wave; (d) 2D far-field pattern under the vertical incidence of RCP wave.

    图 11  2-bit随机编码序列B

    Fig. 11.  2-bit random coding sequence.

    图 12  0.74 THz处编码超表面的3D远场方向图

    Fig. 12.  3D far-field pattern of coding metasurface at 0.74 THz.

    图 13  编码超表面的RCS缩减量

    Fig. 13.  RCS reduction of coding metasurface.

    图 14  2-bit棋盘格编码序列C

    Fig. 14.  Coding metasurface C of 2-bit chessboard.

    图 15  f2 = 0.74 THz 的y极化波垂直入射下编码超表面的3D远场方向图

    Fig. 15.  3D far-field pattern of coding metasurface under the vertical incidence of y-polarized wave at 0.74 THz.

    图 16  y极化波垂直入射下编码超表面在极坐标中的2D远场方向图

    Fig. 16.  2D far-field patterns of coding metasurface in polar coordinates under the vertical incidence of y-polarized wave.

  • [1]

    Zi J C, Xu Q, Wang Q, Tian C X, Li Y F, Zhang X X, Han J G, Zhang W L 2018 Appl. Phys. Lett. 113 101104Google Scholar

    [2]

    Asl A B, Rostami A, Amiri I S 2020 Opt. Quant. Electron. 52 155Google Scholar

    [3]

    Gaufillet F, Marcellin S, Akmansoy É 2016 IEEE J. Sel. Top. Quant. 23 4700605

    [4]

    Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102Google Scholar

    [5]

    Xu W D, Xie L J, Zhu J F, Xu X, Ye Z Z, Wang C, Ma Y G, Ying Y B 2016 ACS Photonics 3 2308Google Scholar

    [6]

    Luo J, Liang J G, Yu Y, Ma H, Yang R S, Fan Y C, Wang G M, Cai T 2020 Adv. Opt. Mater. 8 2000449Google Scholar

    [7]

    Peng L, Jiang X, Li S M 2018 Nanoscale Res. Lett. 13 385Google Scholar

    [8]

    Cheng Z Z, Cheng Y Z 2019 Opt. Commun. 435 178Google Scholar

    [9]

    Zhou C, Peng X Q, Li J S 2020 Optik 216 164937Google Scholar

    [10]

    王羚, 高峰, 滕书华, 谭志国, 张星, 娄军, 邓力 2023 光学学报 43 0324001Google Scholar

    Wang L, Gao F, Teng S H, Tan Z G, Zhang X, Lou J, Deng L 2023 Acta Opt. Sin. 43 0324001Google Scholar

    [11]

    Cui T J, Qi M Q, Wan X, et al. 2014 Light-sci. Appl. 3 e218Google Scholar

    [12]

    Liu S, Zhang L, Yang Q L, et al. 2016 Adv. Opt. Mater. 4 1965Google Scholar

    [13]

    Cheng J, Li J S 2022 Opt. Commun. 524 128758Google Scholar

    [14]

    Bai G D, Ma Q, Iqbal S, et al. 2018 Adv. Opt. Mater. 6 1800657Google Scholar

    [15]

    Zhang P, Li L, Zhang X M, Liu H X, Shi Y 2019 IEEE Access 7 110387Google Scholar

    [16]

    Guo W L, Wang G M, Luo X Y, Hou H S, Chen K, Feng Y J 2020 Ann. Phys-berlin. 532 1900472Google Scholar

    [17]

    Liu S, Cui T J, Xu Q, et al. 2016 Light-sci. Appl. 5 e16076Google Scholar

    [18]

    Li J, Li J T, Yang Y, et al. 2020 Carbon 163 34Google Scholar

    [19]

    Shabanpour J, Sedaghat M, Nayyeri V, Oraizi H, Ramahi O M 2021 Opt. Express 29 14525Google Scholar

    [20]

    Li J, Yang Y, Li J N, Zhang Y T, Zhang Z, Zhao H L, Li F Y, Tang T T, Dai H T, Yao J Q 2020 Adv. Theory. Simul. 3 1900183Google Scholar

    [21]

    Lin Q W, Wong H, Huitema L, Crunteanu A 2022 Adv. Opt. Mater. 10 2101699Google Scholar

    [22]

    Lu C, Lu Q J, Gao M, Lin Y 2021 Nanomaterials 11 114Google Scholar

    [23]

    Li J, Zhang Y T, Li J N, Yan X, Liang L J, Zhang Z, Huang J, Li J H, Yang Y, Yao J Q 2019 Nanoscale 11 5746Google Scholar

    [24]

    Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar

    [25]

    Yu S X, Li L, Shi G M 2016 Appl. Phys. Express 9 082202Google Scholar

    [26]

    Liu X B, Wang Q, Zhang X Q, et al. 2019 Adv. Opt. Mater. 7 1900175Google Scholar

    [27]

    Zhao Y C, Zhang Y X, Shi Q W, Liang S X, Huang W X, Kou W, Yang Z Q 2018 ACS Photonics 5 3040Google Scholar

    [28]

    Shabanpour J 2020 J. Mater. Chem. C 8 7189Google Scholar

    [29]

    Song Z Y, Wei M L, Wang Z S, Cai G X, Liu Y N, Zhou Y G 2019 IEEE Photonics J. 11 4600607Google Scholar

    [30]

    Zhang C H, Zhou G C, Wu J B, et al. 2019 Phys. Rev. Appl. 11 054016Google Scholar

    [31]

    Ran Y Z, Liang J G, Cai T, Li H P 2018 Opt. Commun. 427 101Google Scholar

    [32]

    Liu S, Cui T J, Zhang L, et al. 2016 Adv. Sci. 3 1600156Google Scholar

    [33]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [34]

    Yu P, Besteiro L V, Huang Y J, et al. 2019 Adv. Opt. Mater. 7 1800995Google Scholar

    [35]

    Zhang M, Cao M S, Shu J C, Cao W Q, Li L, Yuan J 2021 Mat. Sci. Eng. R Rep. 145 100627Google Scholar

    [36]

    Liu X, Gao J, Xu L M, Cao X Y, Zhao Y, Li S J 2016 IEEE Antennas Wirel. Propag. Lett. 16 724Google Scholar

    [37]

    Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar

    [38]

    封覃银, 裘国华, 严德贤, 李吉宁, 李向军 2022 中国光学 15 387Google Scholar

    Feng T Y, Qiu G H, Yan D X, Li J N, Li X J 2022 Chin. Opt. 15 387Google Scholar

  • [1] 魏涛, 张玉洁, 葛宏义, 蒋玉英, 吴旭阳, 孙振雨, 季晓迪, 补雨薇, 贾柯柯. 复合相位调控的波束转向可控反射型超表面. 物理学报, 2024, 73(22): 224201. doi: 10.7498/aps.73.20240764
    [2] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面. 物理学报, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [3] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [5] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [6] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [7] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [8] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] 周瑶瑶, 刘艳红, 闫智辉, 贾晓军. 多功能量子远程传态网络. 物理学报, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
    [10] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [11] 闫忠宝, 孙帅, 张帅, 张尧, 史伟, 盛泉, 史朝督, 张钧翔, 张贵忠, 姚建铨. 二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用. 物理学报, 2021, 70(16): 168701. doi: 10.7498/aps.70.20210084
    [12] 杨培棣, 欧阳琛, 洪天舒, 张伟豪, 苗俊刚, 吴晓君. 利用连续激光抽运-太赫兹探测技术研究单晶和多晶二氧化钒纳米薄膜的相变. 物理学报, 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [13] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [14] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器. 物理学报, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [16] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [17] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [18] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [19] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [20] 范飞, 郭展, 白晋军, 王湘晖, 常胜江. 多功能磁光子晶体太赫兹可调偏振控制器件. 物理学报, 2011, 60(8): 084219. doi: 10.7498/aps.60.084219
计量
  • 文章访问数:  4206
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-02-20
  • 上网日期:  2023-03-21
  • 刊出日期:  2023-05-05

/

返回文章
返回