搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多功能量子远程传态网络

周瑶瑶 刘艳红 闫智辉 贾晓军

引用本文:
Citation:

多功能量子远程传态网络

周瑶瑶, 刘艳红, 闫智辉, 贾晓军

A multifunctional quantum teleportation network

Zhou Yao-Yao, Liu Yan-Hong, Yan Zhi-Hui, Jia Xiao-Jun
PDF
HTML
导出引用
  • 连续变量量子远程传态在构建连续变量量子计算以及量子信息网络中发挥着重要作用. 随着量子信息研究的深入发展, 人们对多组份的量子远程传态以及它的灵活多样性、可控性等方面提出了更高的要求. 本文提出了一种多功能量子远程传态网络的理论构建方案, 首先将两对Einstein-Podolsky-Rosen纠缠态光场相互耦合, 获得具有特殊量子关联的4个光场模式, 然后以此为量子资源构建功能性完全不同的两类量子远程传态网络, 一类是仅能传送一个未知量子态的可控性量子远程传态网络, 一类是可以同时传送两个未知量子态的量子远程传态网络. 本文分别从控制方的数量、可传送未知量子态的数量、保真度等多方面分析了不同功能量子远程传态网络的应用特点及优势. 该方案中仅利用同一种量子资源实现了量子远程传态网络的多类型构建, 且量子资源的制备方式简易, 易于向更多组份扩展, 这些优势都为以后建立更大规模更加复杂的量子信息网络提供了更多更广阔的应用前景, 加快了量子信息实用化的步伐.
    Quantum teleportation is one of the most basic quantum protocols, which transfers an unknown quantum state from one location to another through local operation and classical communication by using shared quantum entanglement without physical transfer of the information carrier. And it has been widely used in various quantum information protocols such as entanglement swapping, quantum repeaters, quantum gate teleportation, quantum computation based on measurement, and quantum teleportation networks, which have important application value in quantum computation and quantum information. Quantum teleportation is a naturally bipartite process, in which an unknown quantum state can only be transmitted from one node to another. With the further development of quantum information research, it is necessary to transfer quantum states or quantum information among more and more nodes. Multipartite quantum protocols are expected to form fundamental components for larger-scale quantum communication and computation. A bipartite quantum teleportation should be extended to a multipartite protocol known as a quantum teleportation network. In this paper, a multifunctional quantum teleportation network is proposed theoretically. We first propose a special method of constructing four-partite quantum resources in continuous variables (CVs), and based on this, construct two different types of CV quantum teleportation networks. One type of network contains just one quantum teleportation process consisting of a sender, a receiver and two controllers. In this type of network, the unknown quantum state can be recovered at any other node according to the requirement after the measurement in the input node, which enriches the transfer direction and transfer mode of the unknown quantum state. And meanwhile, the two controllers can control the transfer of a quantum state from the sender to the receiver by restricting the sender and receiver’s access to their information, which makes the quantum teleportation network controllable. The other type of network has two quantum teleportation processes, each containing only a sender, a receiver and no controllers, which increases the number of quantum states that can be transmitted. Then we analyze the dependence of the fidelity of each quantum teleportation network on different physical parameters, and compare the characteristics, advantages and disadvantages among different types of quantum teleportation networks. The scheme for constructing a multifunctional quantum teleportation network in this paper shows some advantages, such as the greater number of quantum nodes, diversity of types, simple operation procedure. And all these advantages provide a broader application prospect for establishing larger and more complex quantum information networks in the future and quicken the pace of the application of quantum information.
      通信作者: 周瑶瑶, zhouyaoyaofangxia@163.com
    • 基金项目: 国家自然科学基金(批准号: 11804246, 11805141, 11904218, 12004276, 11847111, 61775127, 11654002)、国家重点研发计划(批准号: 2016YFA0301402)、山西省自然科学基金(批准号: 201901D111293)、山西省高等学校创新人才支持计划资助、山西省高等学校科技创新项目(批准号: 2019L0794, 2020L0516)、山西青年三晋学者项目、山西省“1331工程”重点学科建设计划资助的课题、山西省高等学校创新人才支持计划和太原师范学院“1331工程”项目资助的课题
      Corresponding author: Zhou Yao-Yao, zhouyaoyaofangxia@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804246, 11805141, 11904218, 12004276, 11847111, 61775127, 11654002), the National Key R&D Program of China (Grant No. 2016YFA0301402), the Natural Science Foundation of Shanxi Province, China (Grant No. 201901D111293), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant Nos. 2019L0794, 2020L0516), the Program for Sanjin Scholars of Shanxi Province, the Fund for Shanxi “1331Project” Key Subjects Construction, China, the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China and the “1331Program” of Taiyuan Normal University
    [1]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [3]

    Boschi D, Branca S, Martini F D, Hardy L, Popescu S 1998 Phys. Rev. Lett. 80 1121Google Scholar

    [4]

    Nielsen M A, Knill E, Laflamme R 1998 Nature 396 52Google Scholar

    [5]

    Marcikic I, Riedmatten H D, Tittel W, Zbinden H, Gisin N 2003 Nature 421 509Google Scholar

    [6]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [7]

    Bowen W P, Treps N, Buchler B C, Schnabel R, Ralph T C, Bachor H A, Symul T, Lam P K 2003 Phys. Rev. A 67 032302Google Scholar

    [8]

    Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802Google Scholar

    [9]

    Su X L, Tian C X, Deng X W, Li Q, Xie C D, Peng K C 2016 Phys. Rev. Lett. 117 240503Google Scholar

    [10]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [11]

    Makino K, Hashimoto Y, Yoshikawa J I, Ohdan H, Toyama T, Loock P V, Furusawa A 2016 Sci. Adv. 2 e1501772Google Scholar

    [12]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [13]

    Xu J S, Yung M H, Xu X Y, Tang J S, Li C F, Guo G C 2016 Sci. Adv. 2 e1500672Google Scholar

    [14]

    Gottesman D, Chuang I L 1999 Nature 402 390Google Scholar

    [15]

    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar

    [16]

    Bouchard F, Fickler R, Boyd R W, Karimi E 2017 Sci. Adv. 3 e1601915Google Scholar

    [17]

    Vaidman L 1994 Phys. Rev. A 49 1473Google Scholar

    [18]

    Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70Google Scholar

    [19]

    Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar

    [20]

    Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012 Opt. Lett. 37 5178Google Scholar

    [21]

    Yukawa M, Ukai R, Loock P V, Furusawa A 2008 Phys. Rev. A 78 012301Google Scholar

    [22]

    Loock P V, Braunstein S L 2000 Phys. Rev. Lett. 84 3482Google Scholar

    [23]

    Yonezawa H, Aoki T, Furusawa A 2004 Nature 431 430Google Scholar

    [24]

    Karlsson A, Bourennane M 1998 Phys. Rev. A 58 4394Google Scholar

    [25]

    Lee J, Kim M S 2000 Phys. Rev. Lett. 84 4236Google Scholar

    [26]

    Lee J, Min H, Oh S D 2002 Phys. Rev. A 66 052318Google Scholar

    [27]

    Chen X B, Xu G, Yang Y X, Wen Q Y 2010 Opt. Commun. 283 4802Google Scholar

    [28]

    Zheng Y Z, Gu Y J, Guo G C 2002 Chin. Phys. B 11 537Google Scholar

    [29]

    Man Z X, Xia Y J, An N B 2007 Phys. Rev. A 75 052306Google Scholar

    [30]

    Li S S, Nie Y Y, Hong Z H, Yi X J, Huang Y B 2008 Commun. in Theoretical Phys. 50 633Google Scholar

    [31]

    Pirandola S, Eisert J, Weedbrook C, Furusawa A, Braunstein S L 2015 Nat. Photonics 9 641Google Scholar

    [32]

    He G Q, Zhang J T, Zeng G H 2008 J. Phys. B: At. Mol. Opt. Phys. 41 215503Google Scholar

    [33]

    Ren L J, He G Q, Zeng G H 2008 Phys. Rev. A 78 042302Google Scholar

    [34]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar

    [35]

    Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßler S, Danzmann K, Schnabel R 2008 Phys. Rev. Lett. 100 033602Google Scholar

    [36]

    Zhou Y Y, Jia X J, Li F, Xie C D, Peng K C 2015 Opt. Express 23 4952Google Scholar

    [37]

    Braunstein S L, Fuchs C A, Kimble H J 2000 J. Mod. Opt. 47 267Google Scholar

    [38]

    Braunstein S L, Fuchs C A, Kimble H J, Loock P V 2001 Phys. Rev. A 64 022321Google Scholar

    [39]

    Yu T, Eberly J H 2009 Science 323 598Google Scholar

    [40]

    Almeida M P, Melo F D, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579Google Scholar

    [41]

    Barbara M T 2015 Rev. Mod. Phys. 87 307Google Scholar

    [42]

    Duan L, Guo G 1999 Phys. Lett. A 255 209Google Scholar

    [43]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

  • 图 1  四组份量子资源的产生装置原理图

    Fig. 1.  Schematic diagram of four-partite quantum resource generation system.

    图 2  将一个未知量子态传送至Claire处的四组份量子远程传态网络的结构示意图, 其中AM为振幅调制器, PM为位相调制器, BS为分束器, HD为平衡零拍探测器

    Fig. 2.  Schematic diagram of four-partite quantum teleportation network teleporting an unknown quantum state to Claire, where AM is Amplitude modulator, PM is Phase modulator, BS is Beam splitter, HD is Homodyne detector.

    图 3  四用户量子远程传态保真度随增益因子g的变化曲线, 曲线1—3分别对应压缩参数为0.5, 0.8和1.5时的保真度大小

    Fig. 3.  Dependences of the fidelity of quantum teleportation with four parties on gain factor g, the traces 1, 2 and 3 are the calculated fidelity when squeezing factor r is selected as 0.5, 0.8 and 1.5, respectively.

    图 4  控制方数量不同的量子远程传态保真度随增益因子g的变化曲线对比图, 曲线1表示有两个控制者参与时的保真度, 曲线2表示仅有一个控制者参与时的保真度, 曲线3表示远程传态保真度的经典极限值

    Fig. 4.  Dependences of the fidelity of quantum teleportation with different number of controllers on gain factor g, trace 1 is the calculated fidelity of quantum teleportation with two controllers, trace 2 is the calculated fidelity of quantum teleportation with only one controller, trace 3 is the classical limit of quantum teleportation.

    图 5  可同时传送两个未知量子态的量子远程传态网络结构示意图, 其中 AM为振幅调制器, PM为位相调制器, BS为分束器, HD为平衡零拍探测器

    Fig. 5.  Schematic diagram of four-partite quantum teleportation network that can simultaneously teleport two unknown quantum states, where AM is Amplitude modulator; PM is Phase modulator, BS is Beam splitter, HD is Homodyne detector.

    图 6  量子远程传态保真度随压缩参数r的变化曲线, 曲线1—4分别对应增益因子为0, 0.5, 0.8和1时的保真度大小, 曲线5表示远程传态保真度的经典极限值

    Fig. 6.  Dependences of the fidelity of quantum teleportation on squeezing factor r, the traces 1, 2, 3 and 4 are the calculated fidelity when gain factor is selected as 0, 0.5, 0.8 and 1, respectively, trace 5 is the classical limit of quantum teleportation.

  • [1]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [2]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [3]

    Boschi D, Branca S, Martini F D, Hardy L, Popescu S 1998 Phys. Rev. Lett. 80 1121Google Scholar

    [4]

    Nielsen M A, Knill E, Laflamme R 1998 Nature 396 52Google Scholar

    [5]

    Marcikic I, Riedmatten H D, Tittel W, Zbinden H, Gisin N 2003 Nature 421 509Google Scholar

    [6]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [7]

    Bowen W P, Treps N, Buchler B C, Schnabel R, Ralph T C, Bachor H A, Symul T, Lam P K 2003 Phys. Rev. A 67 032302Google Scholar

    [8]

    Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802Google Scholar

    [9]

    Su X L, Tian C X, Deng X W, Li Q, Xie C D, Peng K C 2016 Phys. Rev. Lett. 117 240503Google Scholar

    [10]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [11]

    Makino K, Hashimoto Y, Yoshikawa J I, Ohdan H, Toyama T, Loock P V, Furusawa A 2016 Sci. Adv. 2 e1501772Google Scholar

    [12]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [13]

    Xu J S, Yung M H, Xu X Y, Tang J S, Li C F, Guo G C 2016 Sci. Adv. 2 e1500672Google Scholar

    [14]

    Gottesman D, Chuang I L 1999 Nature 402 390Google Scholar

    [15]

    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar

    [16]

    Bouchard F, Fickler R, Boyd R W, Karimi E 2017 Sci. Adv. 3 e1601915Google Scholar

    [17]

    Vaidman L 1994 Phys. Rev. A 49 1473Google Scholar

    [18]

    Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70Google Scholar

    [19]

    Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar

    [20]

    Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012 Opt. Lett. 37 5178Google Scholar

    [21]

    Yukawa M, Ukai R, Loock P V, Furusawa A 2008 Phys. Rev. A 78 012301Google Scholar

    [22]

    Loock P V, Braunstein S L 2000 Phys. Rev. Lett. 84 3482Google Scholar

    [23]

    Yonezawa H, Aoki T, Furusawa A 2004 Nature 431 430Google Scholar

    [24]

    Karlsson A, Bourennane M 1998 Phys. Rev. A 58 4394Google Scholar

    [25]

    Lee J, Kim M S 2000 Phys. Rev. Lett. 84 4236Google Scholar

    [26]

    Lee J, Min H, Oh S D 2002 Phys. Rev. A 66 052318Google Scholar

    [27]

    Chen X B, Xu G, Yang Y X, Wen Q Y 2010 Opt. Commun. 283 4802Google Scholar

    [28]

    Zheng Y Z, Gu Y J, Guo G C 2002 Chin. Phys. B 11 537Google Scholar

    [29]

    Man Z X, Xia Y J, An N B 2007 Phys. Rev. A 75 052306Google Scholar

    [30]

    Li S S, Nie Y Y, Hong Z H, Yi X J, Huang Y B 2008 Commun. in Theoretical Phys. 50 633Google Scholar

    [31]

    Pirandola S, Eisert J, Weedbrook C, Furusawa A, Braunstein S L 2015 Nat. Photonics 9 641Google Scholar

    [32]

    He G Q, Zhang J T, Zeng G H 2008 J. Phys. B: At. Mol. Opt. Phys. 41 215503Google Scholar

    [33]

    Ren L J, He G Q, Zeng G H 2008 Phys. Rev. A 78 042302Google Scholar

    [34]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar

    [35]

    Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßler S, Danzmann K, Schnabel R 2008 Phys. Rev. Lett. 100 033602Google Scholar

    [36]

    Zhou Y Y, Jia X J, Li F, Xie C D, Peng K C 2015 Opt. Express 23 4952Google Scholar

    [37]

    Braunstein S L, Fuchs C A, Kimble H J 2000 J. Mod. Opt. 47 267Google Scholar

    [38]

    Braunstein S L, Fuchs C A, Kimble H J, Loock P V 2001 Phys. Rev. A 64 022321Google Scholar

    [39]

    Yu T, Eberly J H 2009 Science 323 598Google Scholar

    [40]

    Almeida M P, Melo F D, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579Google Scholar

    [41]

    Barbara M T 2015 Rev. Mod. Phys. 87 307Google Scholar

    [42]

    Duan L, Guo G 1999 Phys. Lett. A 255 209Google Scholar

    [43]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

  • [1] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [2] 石韬, 吕丽花, 李有泉. 量子中继过程中纠缠态的选择. 物理学报, 2021, 70(23): 230303. doi: 10.7498/aps.70.20211211
    [3] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [4] 吕泽琦, 谢彦召, 苟明岳, 陈晓宇, 周金山, 李梅, 周熠. 一种200 kV的多功能脉冲辐射系统研制. 物理学报, 2021, 70(20): 205206. doi: 10.7498/aps.70.20210583
    [5] 黄江. 弱测量对四个量子比特量子态的保护. 物理学报, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [6] 徐明, 许传云, 曹克非. 度相关性对无向网络可控性的影响. 物理学报, 2017, 66(2): 028901. doi: 10.7498/aps.66.028901
    [7] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用. 物理学报, 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [8] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理. 物理学报, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [9] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述. 物理学报, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [10] 秦猛, 李延标, 白忠, 王晓. 不同方向Dzyaloshinskii-Moriya相互作用和磁场对自旋系统纠缠和保真度退相干的影响. 物理学报, 2014, 63(11): 110302. doi: 10.7498/aps.63.110302
    [11] 聂敏, 张琳, 刘晓慧. 量子纠缠信令网Poisson生存模型及保真度分析. 物理学报, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [12] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图. 物理学报, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [13] 郭振, 闫连山, 潘炜, 罗斌, 徐明峰. 量子纠缠消相干对确定型远程制备的影响. 物理学报, 2011, 60(6): 060301. doi: 10.7498/aps.60.060301
    [14] 潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发. 耗散系统中实现原子态量子隐形传态的保真度. 物理学报, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [15] 吕菁芬, 马善钧. 光子扣除(增加)压缩真空态与压缩猫态的保真度. 物理学报, 2011, 60(8): 080301. doi: 10.7498/aps.60.080301
    [16] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 物理学报, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [17] 李艳玲, 冯 健, 孟祥国, 梁宝龙. 量子比特的普适远程翻转和克隆. 物理学报, 2007, 56(10): 5591-5596. doi: 10.7498/aps.56.5591
    [18] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [19] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度. 物理学报, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [20] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度. 物理学报, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
计量
  • 文章访问数:  4880
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 修回日期:  2020-12-04
  • 上网日期:  2021-05-08
  • 刊出日期:  2021-05-20

/

返回文章
返回