搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复合超构表面的宽带圆极化双功能器件设计

李海鹏 吴潇 丁海洋 辛可为 王光明

引用本文:
Citation:

基于复合超构表面的宽带圆极化双功能器件设计

李海鹏, 吴潇, 丁海洋, 辛可为, 王光明

Wideband circularly-polarized bifunction devices employing composite metasurfaces

Li Hai-Peng, Wu Xiao, Ding Hai-Yang, Xin Ke-Wei, Wang Guang-Ming
PDF
HTML
导出引用
  • 多功能器件的设计是推动新一代电磁系统发展的重要力量, 而超构表面因其对电磁波的幅度、相位和极化等特性的灵活调控在多功能器件领域备受关注. 传统的多功能超构表面是利用各向异性单元对相互正交的线极化波具有不同响应的特性, 从而设计出适用于线极化的多功能器件. 本文提出了一种缝隙加载的环I形复合超构表面单元, 通过单元臂长和旋转角度的调整实现了对圆极化电磁波传输和几何相位的独立控制. 利用上述两种相位的共同作用, 打破了左旋和右旋圆极化电磁波操控中存在的固有关系, 为圆极化双功能器件的设计提供了新的思路. 在此基础上, 利用复合超构表面分别设计了异面偏折器和定向/涡旋光束产生器, 实验结果表明, 本文设计的两种反射型圆极化双功能器件在9—13 GHz的宽频带范围内均能良好工作.
    Multifunctional device is powerful for promoting the development of a new generation of electromagnetic systems, and the metasurface has attracted much attention in this field due to its flexible control of amplitude, phase, and polarization of the electromagnetic wave. It is very important to achieve different and arbitrary phase distributions for left-handed and right-handed circularly polarized waves in designing circularly polarized lenses. Here, a strategy to control the propagating phase and the geometrical phase simultaneously and independently is proposed by using a gap-loaded ring-shaped composite element. Through adjusting the arm length and the orientation of the unit cell, the propagating phase and geometric phase for the circularly polarized electromagnetic wave can be controlled independently. The combination of above two phases is used to break the inherent relationship between the left-handed and right-handed circularly polarized electromagnetic wave, which provides a new method of designing bifunctional devices for circular polarization. On this basis, a circularly polarized deflector with reflections in different planes and a generator with directional and vortex-shape beams are built by using the proposed composite elements. Simulated and measured results show that the bifunctional devices for circular polarization proposed in this paper can work well in a wide frequency range of 9–13 GHz.
      通信作者: 丁海洋, dinghy2003@hotmail.com ; 王光明, wgming01@sina.com
    • 基金项目: 国防科技大学科研计划项目(批准号: ZK20-21)、国家自然科学基金(批准号: 61871394)和陕西高校青年创新团队资助的课题
      Corresponding author: Ding Hai-Yang, dinghy2003@hotmail.com ; Wang Guang-Ming, wgming01@sina.com
    • Funds: Project supported by the Scientific Research Project of National Defense Science and Technology University, China (Grant No. ZK20-21), the National Natural Science Foundation of China (Grant No. 61871394), and the Youth Innovation Team of Shaanxi Universities, China
    [1]

    杨帆, 许慎恒, 刘骁 杨雪 潘笑天 王敏 肖钰 李懋坤 2018 电波科学学报 33 256

    Yang F, Xu S H, Liu X, Yang X, Pan X T, Wang M, Xiao Y, Li M K 2018 Chin. J. Radio Sci. 33 256

    [2]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [3]

    Sun S L, Yang K Y, Wang C M, Juan T K, Chen T K, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223Google Scholar

    [4]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427Google Scholar

    [5]

    Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829Google Scholar

    [6]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940Google Scholar

    [7]

    Aieta F, Genevet P, Kats M A, Yu N F, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932Google Scholar

    [8]

    郭文龙, 王光明, 李海鹏, 侯海生 2016 物理学报 65 074101Google Scholar

    Guo W L, Wang G M, Li H P, Hou H S 2016 Acta Phys. Sin. 65 074101Google Scholar

    [9]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [10]

    Wu C J, Cheng Y Z, Wang W Y, He B, Gong R Z 2015 Appl. Phys. Express 8 122001Google Scholar

    [11]

    Zhao J M, Sima B Y, Jia N, Wang C, Zhu B, Jiang T, Fe ng, Y J 2016 Opt. Express 24 27849Google Scholar

    [12]

    Song Y C, Ding J, Guo C J, Ren Y H, Zhang J K 2016 IEEE Antennas Wirel. Propag. Lett. 15 329Google Scholar

    [13]

    Liu Y, Li K, Jia Y T, Hao Y W, Gong S X, Guo Y J 2016 IEEE Trans. Antennas Propag. 64 326Google Scholar

    [14]

    Song K, Liu Y H, Luo C R, Zhao X P 2014 J. Phys. D: Appl. Phys. 47 505104Google Scholar

    [15]

    Yu S X, Li L, Shi G M, Zhu C, Zhou X X, Shi Y 2016 Appl. Phys. Lett. 108 121903Google Scholar

    [16]

    Liu K Y, Guo W L, Wang G M, Li H P, Liu Gang 2018 IEEE Access 6 63999Google Scholar

    [17]

    Li H P, Wang G M, Cai T, Liang J G, Gao X J 2018 IEEE Trans. Antennas Propag. 66 5121Google Scholar

    [18]

    Li H P, Wang G M, Cai T, Hou H S, Guo W L 2019 Phys. Rev. Appl. 11 014043Google Scholar

    [19]

    Cai T, Tang S W, Wang G M, X u, H X, Sun S L, He Q, Zhou L 2017 Adv. Opt. Mater. 5 1600506Google Scholar

    [20]

    Guo W L, Wang G M, Li H P, Zhuang Y Q, Shuai C Y 2017 Appl. Phys. A 123 103Google Scholar

    [21]

    Qi X, Zhang Z Y, Zong X Z, Que X F, Nie Z P, Hu J 2019 Sci. Rep. 9 97Google Scholar

    [22]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Opt. Express 24 18468Google Scholar

    [23]

    Ling Y, Huang L, Hong W. Liu T. Jing L, Liu W, Wang Z 2017 Opt. Express 25 29812Google Scholar

    [24]

    Huang L L, Mühlenbernd H, Li X W, Song Y, Bai B F, Wang Y T, Zentgraf T 2015 Adv. Mater. 27 6444Google Scholar

    [25]

    Li Z C, Liu W W, Cheng H, Liu J Y, Chen S Q, Tian J G 2016 Sci. Rep. 6 35485Google Scholar

    [26]

    Wang Z J, Jia H, Yao K, Cai W S, Chen H S, Liu Y M 2016 ACS Photonics 3 2096Google Scholar

  • 图 1  反射型PB单元示意图 (a) 自由视图; (b) 原始单元俯视图; (c)旋转单元俯视图

    Fig. 1.  Schematic diagram of reflected PB unit cell: (a) Free view of the unit cell; (b) top view of the original unit cell; (c) top view of the rotated unit cell.

    图 2  复合超构表面单元结构参数 (a) 单元模型及相关参数; (b) 典型单元俯视图

    Fig. 2.  Structural parameters of the composite metasurface: (a) Model and parameters of the unit cell; (b) top view of the typical unit cell.

    图 3  复合超构表面单元反射系数随频率变化曲线  (a) C1单元线极化反射系数; (b) C1, C2和C3单元的圆极化反射系数

    Fig. 3.  The curves of reflection coefficient versus frequency for the unit cells: (a) Linear polarization reflection coefficient of C1; (b) circular polarization reflection coefficients of C1, C2 and C3.

    图 4  复合超构表面单元反射系数随参数的变化曲线 (a) 10 GHz处, C1, C2和C3单元随旋转角β变化的幅度和相位曲线; (b) 10 GHz处, β = 0°时, 单元传输相位随α变化的幅度和相位曲线

    Fig. 4.  The curves of the reflection coefficient versus structural parameters for unit cells: (a) The curves of the amplitude and phase versus β for C1, C2, and C3 at 10 GHz; (b) the curves of the propagating phase and amplitude versus α at 10 GHz and β = 0°.

    图 5  线性阵列的相位分布、仿真结果及模型 (a) 左旋、右旋、传输和几何相位的线性分布; (b)左旋和右旋反射波的归一化远场方向图; (c)阵列模型

    Fig. 5.  The phase distribution, simulated results and model of the linear array: (a) Linear distribution of left-handed, right-handed, propagating and geometric phase; (b) normalized far-field patterns of left-hand and right-hand reflected waves; (c) model of the linear array.

    图 6  Vivaldi天线及其与超构表面之间的位置关系 (a) Vivaldi天线结构图和VSWR; (b) Vivaldi天线与超构表面位置关系

    Fig. 6.  Structure and location of the Vivaldi antenna: (a) Structure and VSWR of the Vivaldi antenna; (b) location of the Vivaldi antenna.

    图 7  圆极化异面偏折器的相位分布 (a)右旋相位分布; (b)左旋相位分布; (c)传输相位分布; (d)几何相位分布;

    Fig. 7.  Phase distributions of circularly polarized deflector with reflections in different planes: (a) Right-handed circular polarization; (b) left-handed circular polarization; (c) propagating phase; (d) geometric phase.

    图 8  圆极化异面偏折器仿真及测试 (a) 仿真模型; (b) 总能量在10 GHz处的三维仿真远场方向图; (c) 暗室测试示意图

    Fig. 8.  Model and total power farfield radiation pattern of the circularly polarized deflector with reflections in different planes: (a) Simulated model; (b) three-dimensional farfield radiation pattern of total power at 10 GHz.; (c) schematic of the measurement in the anechoic chamber.

    图 9  异面偏折器右旋和左旋分量的远场方向图. 仿真三维方向图 (a) 右旋; (b) 左旋. 仿真和测试二维方向图 (c) xoz面; (d) yoz

    Fig. 9.  Farfield radiation patterns of right-handed and left-handed components. Simulated three-dimensional patterns of (a) right-handed component and (b) left-handed component. Simulated and measured two-dimensional patterns on (c) xoz and (d) yoz plane.

    图 10  异面偏折器在其他频点处的三维总能量仿真远场方向图 (a) 8 GHz; (b) 9 GHz; (c) 11 GHz; (d) 12 GHz; (e) 13 GHz; (f) 14 GHz

    Fig. 10.  Simulated three-dimensional farfield radiation patterns at other frequencies for the circularly polarized deflector with reflections in different planes: (a) 8 GHz; (b) 9 GHz; (c) 11 GHz; (d) 12 GHz; (e) 13 GHz; (f) 14 GHz.

    图 11  异面偏折器的二维方向图随频率变化谱图(红色★为理论计算值) (a) xoz面; (b) yoz

    Fig. 11.  Maps of the two-dimensional far-field pattern versus frequency on different planes for the circularly polarized deflector with reflections on different planes: (a) xoz plane; (b) yoz plane (The symbols marked by red ★ are the theoretical values).

    图 12  定向和涡旋光束产生器的相位分布 (a) 右旋相位分布; (b) 左旋相位分布; (c) 传输相位分布; (d) 几何相位分布

    Fig. 12.  Phase distributions of the circularly polarized generator with directional and vortex-shape beams: (a) Right-handed circular polarization; (b) left-handed circular polarization; (c) propagating phase; (d) geometric phase.

    图 13  定向和涡旋光束产生器的模型和三维仿真方向图 (a) 模型; 10 GHz处的总能量(b), 右旋分量(c); 左旋分量(d)的三维远场方向图

    Fig. 13.  Model and radiation patterns of the circularly polarized generator with directional and vortex-shape beams: (a) Simulation model; three-dimensional patterns of the total power (b), right-handed component (c), and (d) left-handed component at 10 GHz.

    图 14  (a) x极化电场分量在10 GHz处的涡旋近场分布; (b) 其他频点处的三维总能量仿真远场方向图; (c) xoz面和(d) yoz面的仿真和测试二维远场方向图

    Fig. 14.  (a) The x-component electric field distribution at 10 GHz; (b) three-dimensional farfield radiation patterns at other frequencies. Simulated and measured two-dimensional radiation patterns on xoz-plane (c) and yoz-plane (d) at 10 GHz.

  • [1]

    杨帆, 许慎恒, 刘骁 杨雪 潘笑天 王敏 肖钰 李懋坤 2018 电波科学学报 33 256

    Yang F, Xu S H, Liu X, Yang X, Pan X T, Wang M, Xiao Y, Li M K 2018 Chin. J. Radio Sci. 33 256

    [2]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [3]

    Sun S L, Yang K Y, Wang C M, Juan T K, Chen T K, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223Google Scholar

    [4]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427Google Scholar

    [5]

    Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829Google Scholar

    [6]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940Google Scholar

    [7]

    Aieta F, Genevet P, Kats M A, Yu N F, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932Google Scholar

    [8]

    郭文龙, 王光明, 李海鹏, 侯海生 2016 物理学报 65 074101Google Scholar

    Guo W L, Wang G M, Li H P, Hou H S 2016 Acta Phys. Sin. 65 074101Google Scholar

    [9]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [10]

    Wu C J, Cheng Y Z, Wang W Y, He B, Gong R Z 2015 Appl. Phys. Express 8 122001Google Scholar

    [11]

    Zhao J M, Sima B Y, Jia N, Wang C, Zhu B, Jiang T, Fe ng, Y J 2016 Opt. Express 24 27849Google Scholar

    [12]

    Song Y C, Ding J, Guo C J, Ren Y H, Zhang J K 2016 IEEE Antennas Wirel. Propag. Lett. 15 329Google Scholar

    [13]

    Liu Y, Li K, Jia Y T, Hao Y W, Gong S X, Guo Y J 2016 IEEE Trans. Antennas Propag. 64 326Google Scholar

    [14]

    Song K, Liu Y H, Luo C R, Zhao X P 2014 J. Phys. D: Appl. Phys. 47 505104Google Scholar

    [15]

    Yu S X, Li L, Shi G M, Zhu C, Zhou X X, Shi Y 2016 Appl. Phys. Lett. 108 121903Google Scholar

    [16]

    Liu K Y, Guo W L, Wang G M, Li H P, Liu Gang 2018 IEEE Access 6 63999Google Scholar

    [17]

    Li H P, Wang G M, Cai T, Liang J G, Gao X J 2018 IEEE Trans. Antennas Propag. 66 5121Google Scholar

    [18]

    Li H P, Wang G M, Cai T, Hou H S, Guo W L 2019 Phys. Rev. Appl. 11 014043Google Scholar

    [19]

    Cai T, Tang S W, Wang G M, X u, H X, Sun S L, He Q, Zhou L 2017 Adv. Opt. Mater. 5 1600506Google Scholar

    [20]

    Guo W L, Wang G M, Li H P, Zhuang Y Q, Shuai C Y 2017 Appl. Phys. A 123 103Google Scholar

    [21]

    Qi X, Zhang Z Y, Zong X Z, Que X F, Nie Z P, Hu J 2019 Sci. Rep. 9 97Google Scholar

    [22]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2016 Opt. Express 24 18468Google Scholar

    [23]

    Ling Y, Huang L, Hong W. Liu T. Jing L, Liu W, Wang Z 2017 Opt. Express 25 29812Google Scholar

    [24]

    Huang L L, Mühlenbernd H, Li X W, Song Y, Bai B F, Wang Y T, Zentgraf T 2015 Adv. Mater. 27 6444Google Scholar

    [25]

    Li Z C, Liu W W, Cheng H, Liu J Y, Chen S Q, Tian J G 2016 Sci. Rep. 6 35485Google Scholar

    [26]

    Wang Z J, Jia H, Yao K, Cai W S, Chen H S, Liu Y M 2016 ACS Photonics 3 2096Google Scholar

  • [1] 蒋铭阳, 李九生. 弧度与旋转共同诱导相位调控太赫兹超表面. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241465
    [2] 吴柔兰, 李九生. 线极化与圆极化波均可吸收的太赫兹超表面. 物理学报, 2023, 72(5): 057802. doi: 10.7498/aps.72.20221832
    [3] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [4] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [5] 吕泽琦, 谢彦召, 苟明岳, 陈晓宇, 周金山, 李梅, 周熠. 一种200 kV的多功能脉冲辐射系统研制. 物理学报, 2021, 70(20): 205206. doi: 10.7498/aps.70.20210583
    [6] 周瑶瑶, 刘艳红, 闫智辉, 贾晓军. 多功能量子远程传态网络. 物理学报, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
    [7] 罗慧玲, 凌晓辉, 周新星, 罗海陆. 光束正入射至界面时的自旋-轨道相互作用及其增强. 物理学报, 2020, 69(3): 034202. doi: 10.7498/aps.69.20191218
    [8] 陈展斌, 董晨钟. 超精细结构效应对辐射光谱圆极化特性的影响. 物理学报, 2018, 67(19): 193401. doi: 10.7498/aps.67.20180322
    [9] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [10] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [11] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [12] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变. 物理学报, 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [13] 饶黄云, 刘义保, 江燕燕, 郭立平, 王资生. 三能级混合态的量子几何相位. 物理学报, 2012, 61(2): 020302. doi: 10.7498/aps.61.020302
    [14] 郑力明, 刘颂豪, 王发强. 非马尔可夫环境下原子的几何相位演化. 物理学报, 2009, 58(4): 2430-2434. doi: 10.7498/aps.58.2430
    [15] 马瑞琼, 李永放, 时 坚. 相干瞬态的量子干涉效应和Berry相位. 物理学报, 2008, 57(7): 4083-4090. doi: 10.7498/aps.57.4083
    [16] 郑映鸿, 陈 童, 王 平, 常 哲. 几何相位的伽利略变换性质. 物理学报, 2007, 56(11): 6199-6203. doi: 10.7498/aps.56.6199
    [17] 沈建其, 庄 飞. 螺旋光纤系统中非绝热条件几何相移. 物理学报, 2005, 54(3): 1048-1052. doi: 10.7498/aps.54.1048
    [18] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究. 物理学报, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [19] 胡国琦, 李康. 有磁单极子存在下的Aharnov-Bohm效应. 物理学报, 2002, 51(6): 1208-1213. doi: 10.7498/aps.51.1208
    [20] 朱红毅, 沈建其. 一般三生成元含时系统的精确解. 物理学报, 2002, 51(7): 1448-1452. doi: 10.7498/aps.51.1448
计量
  • 文章访问数:  6444
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-18
  • 修回日期:  2020-08-18
  • 上网日期:  2021-01-26
  • 刊出日期:  2021-01-20

/

返回文章
返回