搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究

李思佳 曹祥玉 高军 刘涛 杨欢欢 李文强

引用本文:
Citation:

宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究

李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强

Design of ultra-thin broadband metamaterial absorber and its application for RCS reduction of circular polarization tilted beam antenna

Li Si-Jia, Cao Xiang-Yu, Gao Jun, Liu Tao, Yang Huan-Huan, Li Wen-Qiang
PDF
导出引用
  • 为了缩减天线带内雷达散射截面(radar cross section, RCS), 在双频带完美吸波材料的基础上, 通过缩小两吸波率峰值之间的距离, 设计出了一种频带较宽的超薄完美吸波体.该吸波体由两层金属及其中间的有耗介质组成, 底面金属不刻蚀, 顶面由方形贴片和绕其四周的开口方环组成, 该结构具有低频点LC谐振和高频点偶极子谐振的特征.仿真和实验结果表明: 该吸波体具有极化不敏感和宽入射角的特征, 其在厚度小于0.01λ的条件下, 具有8.2%的半波功率相对带宽, 最大吸波率的峰值为91.6%和96.5%. 将吸波体用于圆极化的倾斜波束 (tilted beam, TB)天线, 仿真和测试结果表明: 该天线在保持增益不变的条件下, 不仅轴比得到改善, 有效带宽得到拓展, 且在5.5–6.5 GHz范围内TB天线的RCS缩减至少在3 dBsm以上, 在谐振频点处最大缩减幅度分别为11 dBsm和8 dBsm; 在两谐振点处鼻锥方向-36°–+36°范围内, TB天线的RCS缩减均有明显效果.
    In order to reduce the radar cross section (RCS) of antenna, a wideband-enhanced ultra-thin metamaterial absorber is designed by reducing the distance between the two absorption peaks due to the double resonances. The absorber is composed of two metallic layers separated by a lossy dielectric spacer. The top layer consists of a single-square loop with four splits on the four sides and a square metal patch in the center and the bottom one is of a solid metal. A dipole resonance and an LC resonance are caused by the structure of the metamaterial absorber. By fine adjusting geometry parameters of the structure, we can obtain a polarization-insensitive and wide-incident-angle ultra-thin absorber whose absorption values are 91.6% and 96.5%. On condition that thickness is less than 0.01λ the absorber has a full-width at half-maximum of 8.2%. The absorber is applied to the circularly polarized tilted beam antenna for reducing RCS. Simulated and experimented results show that the RCS reduction of antenna is above 3 dB within the operation band from 5.5 GHz to 6.5 GHz, the gain is not changed and the bandwidth is increased due to the improvement of axial ratio. At the resonance, the most reduction values exceed 8 dBsm and 11 dBsm while the absorber has a good characteristic of RCS reduction at the boresight direction from -36° to +36°.
    • 基金项目: 国家自然科学基金(批准号: 61271100)、中国博士后科学基金(批准号: 20100481497)、陕西省自然科学基金重点项目(批准号: 2010JZ010)、陕西省自然科学基础研究计划(批准号: 2012JM8003)和陕西省电子信息系统综合实验室(批准号: 20101110) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271100), the China Postdoctoral Science Foundation (Grant No. 20100481497), the Key Program of Natural Science Foundation of Shannxi Province, China (Grant No. 2010JZ010), the Basic Research Program of Natural Science of Shannxi Province, China (Grant No. 2012JM8003), and the Open Foundation of the Eletronic Information System Laboratory of Shannxi Province, China (Grant No. 20101110).
    [1]

    Li W Q, Cao X Y, Gao J, Yao X 2011 J. Microw. 27 9 (in Chinese) [李文强, 曹祥玉, 高军, 姚旭2011 微波学报 27 9]

    [2]

    Juan Y, Shen Z X 2007 IEEE Antenna Wireless Propag. Lett. 6 288

    [3]

    Ling J, Gong S X, Zhang P F, Yuan H W, Lu B, Wang W T 2011 J. Xidian Univ. (Nat Sci. Edition) 37 295 (in Chinese) [凌劲, 龚书喜, 张鹏飞, 袁宏伟, 路宝, 王文涛2011西安电子科技大学学报(自然科学版) 37 295]

    [4]

    Jiang W, Liu Y, Gong S X 2009 IEEE Antenna Wireless Propag. Lett. 8 1275

    [5]

    Costa F, Monorchio A, Genovesi S 2010 IEEE Trans. Antennas Propag. 58 1551

    [6]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt D 2007 IEEE Trans. Antennas Propag. 55 3630

    [7]

    Zhang Y, Mittra R, Wang B Z, Huan N T 2009 Electron. Lett. 45 484

    [8]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q 2012 Acta Phys. Sin. 61 184101 (in Chinese) [刘涛, 曹祥玉, 高军, 郑秋容, 李文强2012物理学报 61 184101]

    [10]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2012 J. Electron. Inform. Tech. 34 2790 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2012电子与信息学报 34 2790]

    [11]

    Ashish Dubey T C 2012 J. Sci. Defer. 62 261

    [12]

    Chen H T 2012 Opt. Express 62 7165

    [13]

    Zhu W R, Huang Y J, Rukhlenko I D, Wen G J, Premaratne M 2012 Opt. Express 62 6616

    [14]

    Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 06370

    [15]

    Gu C, Qu S B, Pei Z B, Xu Z, Bai P, Peng W D, Lin B Q 2011 Acta Phys. Sin. 60 087801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤 2011 物理学报 60 087801]

    [16]

    Bao S, Luo C R, Zhao X P 2011 Acta Phys. Sin. 60 014101 (in Chinese) [保石, 罗春荣, 赵晓鹏 2011 物理学报 60 014101]

    [17]

    Smith D R, Vier D C, Koschny Th, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [18]

    Szabo Z, Park G H, Hedge R, Li E P 2010 IEEE Trans. Microw. Theory Tech. 58 2646

    [19]

    Chen X, Grzegorczyk T M, Wu B I, Pcheco J, Kong J A 2004 Phys. Rev. E 70 016608

    [20]

    Nakano H, Kirita S, Naoki M, Yamauchi J J 2011 IEEE Trans. Antennas Propag. 59 3969

    [21]

    Hirose K, Okazaki S, Nakano H 2002 Trans. IEICE J. 85 1934

    [22]

    Li S J, Cao X Y, Gao J, Zheng Q R, Yang H H 2013 J. Xidian Univ. (Nat Sci. Edition) 40 1432 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 杨欢欢 2013 西安电子科技大学学报 (自然科学版) 40 1432]

  • [1]

    Li W Q, Cao X Y, Gao J, Yao X 2011 J. Microw. 27 9 (in Chinese) [李文强, 曹祥玉, 高军, 姚旭2011 微波学报 27 9]

    [2]

    Juan Y, Shen Z X 2007 IEEE Antenna Wireless Propag. Lett. 6 288

    [3]

    Ling J, Gong S X, Zhang P F, Yuan H W, Lu B, Wang W T 2011 J. Xidian Univ. (Nat Sci. Edition) 37 295 (in Chinese) [凌劲, 龚书喜, 张鹏飞, 袁宏伟, 路宝, 王文涛2011西安电子科技大学学报(自然科学版) 37 295]

    [4]

    Jiang W, Liu Y, Gong S X 2009 IEEE Antenna Wireless Propag. Lett. 8 1275

    [5]

    Costa F, Monorchio A, Genovesi S 2010 IEEE Trans. Antennas Propag. 58 1551

    [6]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt D 2007 IEEE Trans. Antennas Propag. 55 3630

    [7]

    Zhang Y, Mittra R, Wang B Z, Huan N T 2009 Electron. Lett. 45 484

    [8]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q 2012 Acta Phys. Sin. 61 184101 (in Chinese) [刘涛, 曹祥玉, 高军, 郑秋容, 李文强2012物理学报 61 184101]

    [10]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2012 J. Electron. Inform. Tech. 34 2790 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2012电子与信息学报 34 2790]

    [11]

    Ashish Dubey T C 2012 J. Sci. Defer. 62 261

    [12]

    Chen H T 2012 Opt. Express 62 7165

    [13]

    Zhu W R, Huang Y J, Rukhlenko I D, Wen G J, Premaratne M 2012 Opt. Express 62 6616

    [14]

    Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 06370

    [15]

    Gu C, Qu S B, Pei Z B, Xu Z, Bai P, Peng W D, Lin B Q 2011 Acta Phys. Sin. 60 087801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤 2011 物理学报 60 087801]

    [16]

    Bao S, Luo C R, Zhao X P 2011 Acta Phys. Sin. 60 014101 (in Chinese) [保石, 罗春荣, 赵晓鹏 2011 物理学报 60 014101]

    [17]

    Smith D R, Vier D C, Koschny Th, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [18]

    Szabo Z, Park G H, Hedge R, Li E P 2010 IEEE Trans. Microw. Theory Tech. 58 2646

    [19]

    Chen X, Grzegorczyk T M, Wu B I, Pcheco J, Kong J A 2004 Phys. Rev. E 70 016608

    [20]

    Nakano H, Kirita S, Naoki M, Yamauchi J J 2011 IEEE Trans. Antennas Propag. 59 3969

    [21]

    Hirose K, Okazaki S, Nakano H 2002 Trans. IEICE J. 85 1934

    [22]

    Li S J, Cao X Y, Gao J, Zheng Q R, Yang H H 2013 J. Xidian Univ. (Nat Sci. Edition) 40 1432 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 杨欢欢 2013 西安电子科技大学学报 (自然科学版) 40 1432]

  • [1] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [2] 陈展斌, 董晨钟. 超精细结构效应对辐射光谱圆极化特性的影响. 物理学报, 2018, 67(19): 193401. doi: 10.7498/aps.67.20180322
    [3] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [4] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [5] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [6] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [7] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [8] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [9] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究. 物理学报, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [10] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [11] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [12] 李文强, 高军, 曹祥玉, 杨群, 赵一, 张昭, 张呈辉. 一种具有吸波和相位相消特性的共享孔径雷达吸波材料. 物理学报, 2014, 63(12): 124101. doi: 10.7498/aps.63.124101
    [13] 李思佳, 曹祥玉, 高军, 郑秋容, 杨群, 张昭, 张焕梅. 高Q值超薄完美吸波体设计方法研究. 物理学报, 2013, 62(24): 244101. doi: 10.7498/aps.62.244101
    [14] 杨利霞, 沈丹华, 施卫东. 三维时变等离子体目标的电磁散射特性研究. 物理学报, 2013, 62(10): 104101. doi: 10.7498/aps.62.104101
    [15] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [16] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [17] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [18] 刘涛, 曹祥玉, 高军, 郑秋容, 李文强. 基于超材料的吸波体设计及其波导缝隙天线应用. 物理学报, 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [19] 李民权, 陶小俊, 赵 瑾, 吴先良. 基于辛Runge-Kutta-Nystrom方法的雷达散射截面计算. 物理学报, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [20] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析. 物理学报, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
计量
  • 文章访问数:  3546
  • PDF下载量:  2228
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-30
  • 修回日期:  2013-03-01
  • 刊出日期:  2013-06-05

宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究

  • 1. 空军工程大学信息与导航学院, 西安 710077
    基金项目: 国家自然科学基金(批准号: 61271100)、中国博士后科学基金(批准号: 20100481497)、陕西省自然科学基金重点项目(批准号: 2010JZ010)、陕西省自然科学基础研究计划(批准号: 2012JM8003)和陕西省电子信息系统综合实验室(批准号: 20101110) 资助的课题.

摘要: 为了缩减天线带内雷达散射截面(radar cross section, RCS), 在双频带完美吸波材料的基础上, 通过缩小两吸波率峰值之间的距离, 设计出了一种频带较宽的超薄完美吸波体.该吸波体由两层金属及其中间的有耗介质组成, 底面金属不刻蚀, 顶面由方形贴片和绕其四周的开口方环组成, 该结构具有低频点LC谐振和高频点偶极子谐振的特征.仿真和实验结果表明: 该吸波体具有极化不敏感和宽入射角的特征, 其在厚度小于0.01λ的条件下, 具有8.2%的半波功率相对带宽, 最大吸波率的峰值为91.6%和96.5%. 将吸波体用于圆极化的倾斜波束 (tilted beam, TB)天线, 仿真和测试结果表明: 该天线在保持增益不变的条件下, 不仅轴比得到改善, 有效带宽得到拓展, 且在5.5–6.5 GHz范围内TB天线的RCS缩减至少在3 dBsm以上, 在谐振频点处最大缩减幅度分别为11 dBsm和8 dBsm; 在两谐振点处鼻锥方向-36°–+36°范围内, TB天线的RCS缩减均有明显效果.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回