搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究

梁达川 魏明贵 谷建强 尹治平 欧阳春梅 田震 何明霞 韩家广 张伟力

引用本文:
Citation:

缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究

梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力

Broad-band time domain terahertz radar cross-section research in scale models

Liang Da-Chuan, Wei Ming-Gui, Gu Jian-Qiang, Yin Zhi-Ping, Ouyang Chun-Mei, Tian Zhen, He Ming-Xia, Han Jia-Guang, Zhang Wei-Li
PDF
导出引用
  • 本文首次以钛宝石飞秒激光振荡级为抽运源,搭建了国内首套宽频时域太赫兹雷达(带宽0.11.3 THz)并进行了基于标准球的系统校正验证. 利用该雷达测量了太赫兹波段三种缩比模型的散射时域信号. 通过改进后的后向投影算法对模型的轮廓外形进行了成像研究,验证了新型时域散射信号成像机理. 太赫兹雷达更高的频率,宽谱的特征和高分辨率成像的能力有望用于隐形外形设计过程,成为新兴的太赫兹散射特征研究平台.
    Based on terahertz time-domain spectrscopy (THz-TDS) technology, a broad-band time domain terahertz radar system can be used to do research on scattering characteristics of objects. At present, the optical structure and mechanism of this system-showing the radar detection principle and imaging mechanism-has attracted a lot of interest in the terahertz research field. Based on the femtosecond Ti: sapphire osillators pumped terahertz time-domain spectrscopy system, this paper constructs the first terahertz radar system in this country (0.11.3 THz). System calibration is carried out by measurements on standard metallic spheres. Three military scale models are measured by the Radar system. The shapes of the models are retrieved by the improved back projection algorithm, which verifies the new imaging mechanism based on time domain scattering signal. With high frequency broad band spectrum and high imaging resolution, the terahertz radar would make great contribution to stealth military units design and become a new research platform on terahertz scattering characteristics.
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB339800)、国家自然科学基金(批准号:61107053,61138001)和国家重大科学仪器设备开发专项(批准号:2011YQ150021)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339800), the National Natural Science Foundation of China (Grant Nos. 61107053, 61138001), and the Major National Development Project of Scientific Instruments and Equipment of China (Grant No. 2011YQ150021).
    [1]

    Siegel P H 2002 IEEE Transactions on Microwave Theory and Techniques 50 910

    [2]

    Zhang TY, Cao JC 2004 Chin. Phys. 13 1742

    [3]

    Xu J Z, Zhang X C 2007 Applications of Terahertz Science and Technology (Beijing: Peking University Press) p206 (in Chinese) [许景周, 张希成2007太赫兹科学技术和应用(北京: 北京大学出版社)第206页]

    [4]

    Yun-shik Lee (translated by Cui W Z) 2012 Principles of Terahertz Science and Technology (Beijing: National Defence Industry Press) p192 (in Chinese) [Yun-Shik Lee著(崔万照译) 2012太赫兹科学与技术原理(北京: 国防工业出版社)第192页]

    [5]

    Gu C, Qu SB, Pei ZB, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [6]

    Tian L, Zhou QL, Zhao K, Shi YL, Zhao DM, Zhao SQ, Zhao H, Bao RM, Zhu SM, Miao Q 2011 Chin. Phys. B 20 010703

    [7]

    Goyette T M, Dickinson J C, Waldman J, Nixon W E 2000 International Society for Optics and Photonics AeroSense, Belgium 2000 p615

    [8]

    DeMartinis G B, Coulombe M J, Horgan T M 2010 Proceedings of the Antenna Measurements and Techniques Association Atlanta, USA 2010 p3

    [9]

    Danylov AA, Goyette T M Waldman 2010 Opt. Express 18 16264

    [10]

    Dengler R J, Cooper K B, Chattopadhyay G Mehdi I, Schlecht E, Skalare A, Chen C, Siegel P H 2007 IEEE/MTT-S International Microwave Symposium Honolulu, USA, 2007 p1371

    [11]

    Chattopadhyay G, Cooper K B, Dengler R, Bryllert T E, Schlecht E, Skalare A, Mehdi I, Siegel P H 2008 Proceedings of 19th International Symposium on Space Terahertz Technology Groningen, Netherlands, 2008 p3 00

    [12]

    Cooper K B, Denglera R J, Chattopadhyay G, Schlecht E, Gill J, Skalare A, Mehdi I, and Siegel P H 2008 IEEE Microw. Wireless Compon. Lett 18 64

    [13]

    Gu S M, Li C, Gao X, Sun Z Y Fang G Y 2012 IEEE Trans. Microw. Theory Techn. 60 3877

    [14]

    Cai YW, Yang C, Zeng GH, Huang X, Wang C, Jiang G, Li RZ, Tao RH, Zhang J, Zhou CM, Yao J 2012 High Power Laser and Particle Beams 24 7 (in Chinese) [蔡英武, 杨陈, 曾耿华, 黄祥, 王成, 江舸, 李如忠, 陶荣辉, 张健, 周传明, 姚军 2012 强激光与粒子束 24 7]

    [15]

    Cheng BB, Jiang K, Chen P, Yang C, Lu B, Cai YW, Deng XJ, Chen Z, Zhang J, Zhou CM 2013 Journal of Terahertz Science and Electronic Information Technology 1 7 (in Chinese) [成彬彬, 江舸, 陈鹏, 杨陈, 陆彬, 蔡英武, 邓贤进, 陈樟, 张健, 周传明2013太赫兹科学与电子信息学报1 7]

    [16]

    Mickan S P, Zhang X C 2003 T-ray International Journal of High Speed Electronics and Systems 13 601

    [17]

    Appleby R, Wallace H B 2007 IEEE transactions on antennas and propagation 55 2944

    [18]

    Grischkowsky D, Keiding S, Exter M, Fattinger Ch 1990 JOSA B 7 2006

    [19]

    McGowan R W, Cheville R A, Grischkowsky D R 2000 IEEE Trans. Microwave Theory & Techn. 48 417

    [20]

    Iwaszczuk K, Heiselberg H, Jepsen P U 2010 Opt. Express 18 26399

    [21]

    Jansen C, Krumbholz N Geisb R, Probst T 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves Busan, Korea 2009 p1

    [22]

    Gente R, Jansen C, Geise R, Peters O 2012 Terahertz Science and Technology, IEEE Transactions on 2 424

    [23]

    Knott E F 1993 Radar cross section measurements (Rleigh: SciTech Publishing) pp16-17

    [24]

    Mie G 1908 Annalen der physik 25 377

    [25]

    Born M, Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Cambridge: Press Syndicate of the University of Cambridge) pp633-644

    [26]

    Huang P K, Yin H C, Xu X J 2005 Radar Target Characteristics (Beijing: Publishing House of Electronics Industry) pp71-72 (in Chinese) [黄培康, 殷红成, 许小剑2005雷达目标特性(北京: 电子工业出版社)第21页, 第71–72页]

    [27]

    Bao Z, Xing M D, Wang T 2005 Radar Imaging Technology (Beijing: Publishing House of Electronics Industry) pp6-18 (in Chinese) [保铮, 邢孟道, 王彤2005雷达成像技术(北京: 电子工业出版社)第6–18页]

    [28]

    Zhang L X, Hu C F 2009 Measurement and Imaging of Radar Target Scattering characteristics (Beijing: China Astronautic Publishing House) p100 (in Chinese) [张麟兮, 胡楚峰2009雷达目标散射特性测试与成像诊断(中国宇航出版社) p100]

    [29]

    Nguyen L, Ressler M, Sichina J 2008 SPIE Defense and Security Symposium International Society for Optics and Photonics orlando, USA 2008 p69470B

    [30]

    Su Y 2001 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [粟毅2001博士学位论文(长沙: 国防科技大学)]

    [31]

    Xu Y Y, Zhang Q Y, Fang G Y 2011 Journal of Electronics & Information Technology 33 1822 (in Chinese) [徐艳云, 张群英, 方广有 2011 电子与信息学报 33 1822]

    [32]

    Ausherman D A, Kozma A, Walker J L, Jones H M, Poggio E C 1984 Aerospace and Electronic Systems, IEEE Transactions on 4 363

  • [1]

    Siegel P H 2002 IEEE Transactions on Microwave Theory and Techniques 50 910

    [2]

    Zhang TY, Cao JC 2004 Chin. Phys. 13 1742

    [3]

    Xu J Z, Zhang X C 2007 Applications of Terahertz Science and Technology (Beijing: Peking University Press) p206 (in Chinese) [许景周, 张希成2007太赫兹科学技术和应用(北京: 北京大学出版社)第206页]

    [4]

    Yun-shik Lee (translated by Cui W Z) 2012 Principles of Terahertz Science and Technology (Beijing: National Defence Industry Press) p192 (in Chinese) [Yun-Shik Lee著(崔万照译) 2012太赫兹科学与技术原理(北京: 国防工业出版社)第192页]

    [5]

    Gu C, Qu SB, Pei ZB, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [6]

    Tian L, Zhou QL, Zhao K, Shi YL, Zhao DM, Zhao SQ, Zhao H, Bao RM, Zhu SM, Miao Q 2011 Chin. Phys. B 20 010703

    [7]

    Goyette T M, Dickinson J C, Waldman J, Nixon W E 2000 International Society for Optics and Photonics AeroSense, Belgium 2000 p615

    [8]

    DeMartinis G B, Coulombe M J, Horgan T M 2010 Proceedings of the Antenna Measurements and Techniques Association Atlanta, USA 2010 p3

    [9]

    Danylov AA, Goyette T M Waldman 2010 Opt. Express 18 16264

    [10]

    Dengler R J, Cooper K B, Chattopadhyay G Mehdi I, Schlecht E, Skalare A, Chen C, Siegel P H 2007 IEEE/MTT-S International Microwave Symposium Honolulu, USA, 2007 p1371

    [11]

    Chattopadhyay G, Cooper K B, Dengler R, Bryllert T E, Schlecht E, Skalare A, Mehdi I, Siegel P H 2008 Proceedings of 19th International Symposium on Space Terahertz Technology Groningen, Netherlands, 2008 p3 00

    [12]

    Cooper K B, Denglera R J, Chattopadhyay G, Schlecht E, Gill J, Skalare A, Mehdi I, and Siegel P H 2008 IEEE Microw. Wireless Compon. Lett 18 64

    [13]

    Gu S M, Li C, Gao X, Sun Z Y Fang G Y 2012 IEEE Trans. Microw. Theory Techn. 60 3877

    [14]

    Cai YW, Yang C, Zeng GH, Huang X, Wang C, Jiang G, Li RZ, Tao RH, Zhang J, Zhou CM, Yao J 2012 High Power Laser and Particle Beams 24 7 (in Chinese) [蔡英武, 杨陈, 曾耿华, 黄祥, 王成, 江舸, 李如忠, 陶荣辉, 张健, 周传明, 姚军 2012 强激光与粒子束 24 7]

    [15]

    Cheng BB, Jiang K, Chen P, Yang C, Lu B, Cai YW, Deng XJ, Chen Z, Zhang J, Zhou CM 2013 Journal of Terahertz Science and Electronic Information Technology 1 7 (in Chinese) [成彬彬, 江舸, 陈鹏, 杨陈, 陆彬, 蔡英武, 邓贤进, 陈樟, 张健, 周传明2013太赫兹科学与电子信息学报1 7]

    [16]

    Mickan S P, Zhang X C 2003 T-ray International Journal of High Speed Electronics and Systems 13 601

    [17]

    Appleby R, Wallace H B 2007 IEEE transactions on antennas and propagation 55 2944

    [18]

    Grischkowsky D, Keiding S, Exter M, Fattinger Ch 1990 JOSA B 7 2006

    [19]

    McGowan R W, Cheville R A, Grischkowsky D R 2000 IEEE Trans. Microwave Theory & Techn. 48 417

    [20]

    Iwaszczuk K, Heiselberg H, Jepsen P U 2010 Opt. Express 18 26399

    [21]

    Jansen C, Krumbholz N Geisb R, Probst T 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves Busan, Korea 2009 p1

    [22]

    Gente R, Jansen C, Geise R, Peters O 2012 Terahertz Science and Technology, IEEE Transactions on 2 424

    [23]

    Knott E F 1993 Radar cross section measurements (Rleigh: SciTech Publishing) pp16-17

    [24]

    Mie G 1908 Annalen der physik 25 377

    [25]

    Born M, Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Cambridge: Press Syndicate of the University of Cambridge) pp633-644

    [26]

    Huang P K, Yin H C, Xu X J 2005 Radar Target Characteristics (Beijing: Publishing House of Electronics Industry) pp71-72 (in Chinese) [黄培康, 殷红成, 许小剑2005雷达目标特性(北京: 电子工业出版社)第21页, 第71–72页]

    [27]

    Bao Z, Xing M D, Wang T 2005 Radar Imaging Technology (Beijing: Publishing House of Electronics Industry) pp6-18 (in Chinese) [保铮, 邢孟道, 王彤2005雷达成像技术(北京: 电子工业出版社)第6–18页]

    [28]

    Zhang L X, Hu C F 2009 Measurement and Imaging of Radar Target Scattering characteristics (Beijing: China Astronautic Publishing House) p100 (in Chinese) [张麟兮, 胡楚峰2009雷达目标散射特性测试与成像诊断(中国宇航出版社) p100]

    [29]

    Nguyen L, Ressler M, Sichina J 2008 SPIE Defense and Security Symposium International Society for Optics and Photonics orlando, USA 2008 p69470B

    [30]

    Su Y 2001 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [粟毅2001博士学位论文(长沙: 国防科技大学)]

    [31]

    Xu Y Y, Zhang Q Y, Fang G Y 2011 Journal of Electronics & Information Technology 33 1822 (in Chinese) [徐艳云, 张群英, 方广有 2011 电子与信息学报 33 1822]

    [32]

    Ausherman D A, Kozma A, Walker J L, Jones H M, Poggio E C 1984 Aerospace and Electronic Systems, IEEE Transactions on 4 363

  • [1] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [2] 张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强. 太赫兹雷达散射截面的仿真与时域光谱测量. 物理学报, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [3] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [4] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [5] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [6] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [7] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [8] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [9] 李文强, 高军, 曹祥玉, 杨群, 赵一, 张昭, 张呈辉. 一种具有吸波和相位相消特性的共享孔径雷达吸波材料. 物理学报, 2014, 63(12): 124101. doi: 10.7498/aps.63.124101
    [10] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析. 物理学报, 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [11] 梁美彦, 张存林. 相位补偿算法对提高太赫兹雷达距离像分辨率的研究. 物理学报, 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [12] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究. 物理学报, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [13] 王瑞君, 邓彬, 王宏强, 秦玉亮. 太赫兹与远红外频段下铝质目标电磁特性与计算. 物理学报, 2014, 63(13): 134102. doi: 10.7498/aps.63.134102
    [14] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [15] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [16] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [17] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [18] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [19] 李民权, 陶小俊, 赵 瑾, 吴先良. 基于辛Runge-Kutta-Nystrom方法的雷达散射截面计算. 物理学报, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [20] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析. 物理学报, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
计量
  • 文章访问数:  3877
  • PDF下载量:  1321
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-07
  • 修回日期:  2014-06-11
  • 刊出日期:  2014-11-05

缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究

  • 1. 天津大学太赫兹研究中心, 精密仪器域光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072;
  • 2. 合肥工业大学光电技术研究院, 合肥 230009
    基金项目: 国家重点基础研究发展计划(批准号:2014CB339800)、国家自然科学基金(批准号:61107053,61138001)和国家重大科学仪器设备开发专项(批准号:2011YQ150021)资助的课题.

摘要: 本文首次以钛宝石飞秒激光振荡级为抽运源,搭建了国内首套宽频时域太赫兹雷达(带宽0.11.3 THz)并进行了基于标准球的系统校正验证. 利用该雷达测量了太赫兹波段三种缩比模型的散射时域信号. 通过改进后的后向投影算法对模型的轮廓外形进行了成像研究,验证了新型时域散射信号成像机理. 太赫兹雷达更高的频率,宽谱的特征和高分辨率成像的能力有望用于隐形外形设计过程,成为新兴的太赫兹散射特征研究平台.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回