搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹实时近场光谱成像研究

冯龙呈 杜琛 杨圣新 张彩虹 吴敬波 范克彬 金飚兵 陈健 吴培亨

引用本文:
Citation:

太赫兹实时近场光谱成像研究

冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨

Research on terahertz real-time near-field spectral imaging

Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng
PDF
HTML
导出引用
  • 太赫兹成像在生物医学领域的应用潜力非常大, 针对这个需求, 本文设计并搭建了一种利用光整流和波前倾斜技术产生强场太赫兹信号以及基于电光探测的实时太赫兹(terahertz, THz)近场光谱成像系统. 该系统可以进行大视场THz成像和紧聚焦THz成像的切换使用, 为实现系统集成化应用提供了方法. 并且由于成像是基于传统的太赫兹时域光谱方法, 可以同时获得样品图像光谱幅度和相位信息, 光谱分辨率约15 GHz. 利用该系统测量研究了一系列微纳加工的样品, 对成像系统的性能进行了分析. 结果表明, 该实时太赫兹近场光谱成像系统在空间分辨率和成像速度上的优越性, 在1024 × 512的像素下, 实时成像帧率高达20 f/s (1200 张/min). 在大视场THz成像下, 空间最优分辨率在1.5 THz达λ/4; 在紧聚焦THz成像下, 空间最优分辨率在0.82 THz达λ/12, 这些性能使该系统在生物医学成像、生物效应等方面具有很好的应用场景.
    In this paper, a real-time near-field high-resolution THz (terahertz, THz) spectral imaging system is designed and built by using optical rectification and wave-front tilting to generate strong-field terahertz signals and based on electro-optical detection. The system can switch between large beam THz imaging and tight-focusing THz imaging, which provides a method for implementing the integrated application of the system. Since the imaging is based on the traditional THz time-domain spectroscopy method, the spectral amplitude and phase information of the sample can be obtained simultaneously. The spectral resolution is about 15 GHz. A series of micromachining samples is measured and studied by using the system, and the performance of the imaging system is analyzed by using the micron structure. The results show the superiority of the real-time high-resolution terahertz spectral imaging system in terms of spatial resolution and imaging speed. The real-time imaging frame rate is up to 20 f/s (1200 frames/min) at 1024 pixel × 512 pixel. In the large-field THz imaging, the optimal spatial resolution reaches λ/4 at 1.5 THz. In the tightly focused THz imaging, the optimal spatial resolution reaches λ/12 at 0.82 THz. These properties make the system suitable for the applications in biomedical imaging, bbological effects and other areas .
      通信作者: 张彩虹, chzhang@nju.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFA0700202, 2021YFB2800701)、国家自然科学基金(批准号: 61871212, 92163216, 62071217, 62027807)、中央高校基本科研业务费专项资金和江苏省自然科学基金青年基金项目(批准号: BK20190300)资助的课题.
      Corresponding author: Zhang Cai-Hong, chzhang@nju.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2017YFA0700202, 2021YFB2800701), the National Nature Science Foundation of China (Grant Nos. 61871212, 92163216, 62071217, 62027807), and the Fundamental Research Funds for the Central Universities and Natural Science Foundation of Jiangsu Province (Grant No. BK20190300).
    [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [2]

    Wang L P, Wu X, Peng Y, Yang Q R, Chen X H, Wu W W, Zhu Y M, Zhuang S L 2020 Biomed. Opt. Express 11 2570Google Scholar

    [3]

    Wang X K, Cui Y, Dan H, Sun W F, Ye J S, Zhang Y 2009 Opt. Commun. 282 4683Google Scholar

    [4]

    Yang X, Zhao X, Yang K, Liu Y P, Liu Y, Fu W L, Luo Y 2016 Trends Biotechnol. 34 810Google Scholar

    [5]

    Ortolani M, Lee J S, Schade U, Hübers H W 2008 Appl. Phys. Lett. 93 081906Google Scholar

    [6]

    Jiang Z, Zhang X C 1999 Opt. Express 5 243Google Scholar

    [7]

    Peng Y, Shi C, Wang L, Wu X, Zhu Y 2019 Terahertz Sci. Appl. TW2F.3

    [8]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716Google Scholar

    [9]

    Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009Google Scholar

    [10]

    许悦红, 张学迁, 王球, 田震, 谷建强, 欧阳春梅, 路鑫超, 张文涛, 韩家广, 张伟力 2016 物理学报 65 024101Google Scholar

    Xu Y H, Zhang X Q, Wang Q, Tian Z, Gu J Q, Ouyang C M, Lu X C, Zhang W T, Han J G, Zhang W L 2016 Acta Phys. Sin. 65 024101Google Scholar

    [11]

    Cocker T L, Jelic V, Hillenbrand R, Hegmann F A 2021 Nat. Photonics 15 558

    [12]

    Lee A W, Hu Q 2005 Opt. Lett. 30 2563Google Scholar

    [13]

    Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105Google Scholar

    [14]

    Stantchev R I, Sun B, Homett S M, Hobson P A, Gibson G M, Padgett M J, Hendry E 2016 Sci. Adv. 2 e1600190Google Scholar

    [15]

    Chen S C, Feng Z, Li J, Tan W, Du H L, Cai J W, Ma Y C, He K, Ding H F, Zhai Z H, Li Z R, Qiu C W, Zhang X C, Zhu L G 2020 Light Sci. Appl. 9 1Google Scholar

    [16]

    Wu Q, Hewitt T D, Zhang X C 1996 Appl. Phys. Lett. 69 1026Google Scholar

    [17]

    Wang X K, Cui Y, Sun W F, Ye J, Zhang Y 2010 Opt. Commun. 283 4626Google Scholar

    [18]

    Hirori H, Doi A, Blanchard F, Tanaka K 2011 Appl. Phys. Lett. 98 091106Google Scholar

    [19]

    Zhu L G, Li Z R, Pu Y K 2010 Opt. Commun. 283 1873Google Scholar

    [20]

    Li Z X, Yan S H, Zang Z Y, Geng G S. Yang Z B, Li J, Wang L H, Yao C Y, Cui H L, Chang C, Wang H B 2020 Cell Proliferation 53 e12788

    [21]

    韩家广, 朱亦鸣, 张雅鑫 2019 中国激光 46 0614000Google Scholar

    Han J G, Zhu Y M, Zhang Y X 2019 Chin. J. Lasers 46 0614000Google Scholar

    [22]

    Wang X K, Cui Y, Sun W, Zhang Y, Zhang C 2007 Opt. Express 15 14369Google Scholar

    [23]

    Hillenbrand R, Keilmann F 2001 Appl. Phys. B 73 239Google Scholar

    [24]

    Dio A, Blanchard F, Tanaka T, Tanaka K 2011 J. Infrared Millimer Waves 32 1043Google Scholar

    [25]

    Dorney T D, Baraniuk R G, Mittleman D M 2001 JOSA A 18 1562Google Scholar

    [26]

    Blanchard F, Razzari L, Bandulet H C, Sharma G, Morandotti R, Kieffer J C, Ozaki T, Reid M, Tiedje H F, Haugen H K, Hegmann F A 2007 Opt. Express 15 13212Google Scholar

    [27]

    Huber A J, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R 2008 Nano Lett. 8 3766Google Scholar

    [28]

    Andreev V G, Angeluts A A, Vdovin V A, Lukichev V F 2015 Tech. Phys. Lett. 41 180Google Scholar

  • 图 1  实时太赫兹近场光谱成像原理图 (a) THz成像系统结构示意图; (b) THz实时成像原理示意图

    Fig. 1.  Schematic diagram of real-time Terahertz near-field spectral imaging: (a) Schematic diagram of THz imaging system; (b) schematic diagram of THz real-time imaging principle.

    图 2  太赫兹光束图像及横截面轮廓 (a) 大视场光束及横截面轮廓; (b) 紧聚焦光束及横截面轮廓

    Fig. 2.  Terahertz beam image and cross-sectional profile: (a) Large field of view beam and cross-sectional profile; (b) tightly focused beam and cross-sectional profile.

    图 3  微结构示意图 (a) 微纳加工流程图; (b) 结构设计图

    Fig. 3.  Schematic diagram of the microstructure: (a) Micro-nano processing flow chart; (b) structural design drawing.

    图 4  THz TDS光谱测量物理特性模型

    Fig. 4.  Physical characteristic model of THz TDS measurement.

    图 5  太赫兹成像物理特性模型 (a) 大视场成像; (b) 紧聚焦成像

    Fig. 5.  Physical characteristic model of terahertz imaging: (a) Large field of view imaging; (b) tight focus imaging.

    图 6  紧聚焦太赫兹光路“N”结构成像结果分析 (a) 太赫兹时域波形; (b) 太赫兹频域频谱; (c) 时域最大值处对应的CCD相机获取的时域样品太赫兹成像; (d) 几个不同频率处的太赫兹成像; (e) 样品时域太赫兹成像分辨率结果分析; (f) 样品频域分辨率结果分析

    Fig. 6.  THz imaging of the “N” sample by tightly focused THz beam: (a) The terahertz time domain waveform of “N” sample; (b) corresponding terahertz spectroscopy; (c) the temporal THz image from CCD camera when the waveform value is the maximum; (d) coppresponding frequency domain THz images; (e) the temporal THz imaging resolution; (f) the frequency THz imaging resolution

    图 7  大视场光路下扇形样品的太赫兹成像结果 (a) 样品太赫兹时域波形; (b) 对应的样品太赫兹频谱; (c) 样品时域最大值处太赫兹成像; (d) 不同频率下太赫兹成像; (e) 样品时域分辨率分析; (f) 样品频域分辨率结果

    Fig. 7.  THz imaging by large parallel THz beam: (a) The terahertz time domain waveform of the sample; (b) corresponding terahertz spectroscopy; (c) the temporal THz image from CCD camera when the waveform value is the maximum; (d) corresponding frequency domain THz images; (e) the temporal THz imaging resolution; (f) the frequency THz imaging resolution.

  • [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [2]

    Wang L P, Wu X, Peng Y, Yang Q R, Chen X H, Wu W W, Zhu Y M, Zhuang S L 2020 Biomed. Opt. Express 11 2570Google Scholar

    [3]

    Wang X K, Cui Y, Dan H, Sun W F, Ye J S, Zhang Y 2009 Opt. Commun. 282 4683Google Scholar

    [4]

    Yang X, Zhao X, Yang K, Liu Y P, Liu Y, Fu W L, Luo Y 2016 Trends Biotechnol. 34 810Google Scholar

    [5]

    Ortolani M, Lee J S, Schade U, Hübers H W 2008 Appl. Phys. Lett. 93 081906Google Scholar

    [6]

    Jiang Z, Zhang X C 1999 Opt. Express 5 243Google Scholar

    [7]

    Peng Y, Shi C, Wang L, Wu X, Zhu Y 2019 Terahertz Sci. Appl. TW2F.3

    [8]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716Google Scholar

    [9]

    Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009Google Scholar

    [10]

    许悦红, 张学迁, 王球, 田震, 谷建强, 欧阳春梅, 路鑫超, 张文涛, 韩家广, 张伟力 2016 物理学报 65 024101Google Scholar

    Xu Y H, Zhang X Q, Wang Q, Tian Z, Gu J Q, Ouyang C M, Lu X C, Zhang W T, Han J G, Zhang W L 2016 Acta Phys. Sin. 65 024101Google Scholar

    [11]

    Cocker T L, Jelic V, Hillenbrand R, Hegmann F A 2021 Nat. Photonics 15 558

    [12]

    Lee A W, Hu Q 2005 Opt. Lett. 30 2563Google Scholar

    [13]

    Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105Google Scholar

    [14]

    Stantchev R I, Sun B, Homett S M, Hobson P A, Gibson G M, Padgett M J, Hendry E 2016 Sci. Adv. 2 e1600190Google Scholar

    [15]

    Chen S C, Feng Z, Li J, Tan W, Du H L, Cai J W, Ma Y C, He K, Ding H F, Zhai Z H, Li Z R, Qiu C W, Zhang X C, Zhu L G 2020 Light Sci. Appl. 9 1Google Scholar

    [16]

    Wu Q, Hewitt T D, Zhang X C 1996 Appl. Phys. Lett. 69 1026Google Scholar

    [17]

    Wang X K, Cui Y, Sun W F, Ye J, Zhang Y 2010 Opt. Commun. 283 4626Google Scholar

    [18]

    Hirori H, Doi A, Blanchard F, Tanaka K 2011 Appl. Phys. Lett. 98 091106Google Scholar

    [19]

    Zhu L G, Li Z R, Pu Y K 2010 Opt. Commun. 283 1873Google Scholar

    [20]

    Li Z X, Yan S H, Zang Z Y, Geng G S. Yang Z B, Li J, Wang L H, Yao C Y, Cui H L, Chang C, Wang H B 2020 Cell Proliferation 53 e12788

    [21]

    韩家广, 朱亦鸣, 张雅鑫 2019 中国激光 46 0614000Google Scholar

    Han J G, Zhu Y M, Zhang Y X 2019 Chin. J. Lasers 46 0614000Google Scholar

    [22]

    Wang X K, Cui Y, Sun W, Zhang Y, Zhang C 2007 Opt. Express 15 14369Google Scholar

    [23]

    Hillenbrand R, Keilmann F 2001 Appl. Phys. B 73 239Google Scholar

    [24]

    Dio A, Blanchard F, Tanaka T, Tanaka K 2011 J. Infrared Millimer Waves 32 1043Google Scholar

    [25]

    Dorney T D, Baraniuk R G, Mittleman D M 2001 JOSA A 18 1562Google Scholar

    [26]

    Blanchard F, Razzari L, Bandulet H C, Sharma G, Morandotti R, Kieffer J C, Ozaki T, Reid M, Tiedje H F, Haugen H K, Hegmann F A 2007 Opt. Express 15 13212Google Scholar

    [27]

    Huber A J, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R 2008 Nano Lett. 8 3766Google Scholar

    [28]

    Andreev V G, Angeluts A A, Vdovin V A, Lukichev V F 2015 Tech. Phys. Lett. 41 180Google Scholar

  • [1] 徐振, 罗曼, 李吉宁, 刘龙海, 徐德刚. 太赫兹金属线波导传输特性实验研究及模拟分析. 物理学报, 2024, 73(11): 114203. doi: 10.7498/aps.73.20240279
    [2] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [3] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [4] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [5] 赵翔宇, 秦楡禄, 季博宇, 郎鹏, 宋晓伟, 林景全. 飞秒传输表面等离激元的近场成像表征与激发效率的调控. 物理学报, 2021, 70(10): 107101. doi: 10.7498/aps.70.20201827
    [6] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [7] 姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩. 应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性. 物理学报, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [8] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [9] 张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强. 太赫兹雷达散射截面的仿真与时域光谱测量. 物理学报, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [10] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [11] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [12] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松. 小波变换在太赫兹三维成像探测内部缺陷中的应用. 物理学报, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [13] 陈泽章. 太赫兹波段液晶分子极化率的理论研究. 物理学报, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [14] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [15] 鲍迪, 沈晓鹏, 崔铁军. 太赫兹人工电磁媒质研究进展. 物理学报, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [16] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [17] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [18] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [19] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [20] 马士华, 施宇蕾, 徐新龙, 严 伟, 杨玉平, 汪 力. 用太赫兹时域光谱技术探测天冬酰胺的低频集体吸收频谱. 物理学报, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
计量
  • 文章访问数:  6635
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 修回日期:  2022-03-23
  • 上网日期:  2022-08-09
  • 刊出日期:  2022-08-20

/

返回文章
返回