搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹金属线波导传输特性实验研究及模拟分析

徐振 罗曼 李吉宁 刘龙海 徐德刚

引用本文:
Citation:

太赫兹金属线波导传输特性实验研究及模拟分析

徐振, 罗曼, 李吉宁, 刘龙海, 徐德刚

Experimental Study and Simulation Analysis of Transmission Characteristics of Terahertz Metal Wire Waveguides

Xu Zhen, Luo Man, Li Ji-Ning, Liu Long-Hai, Xu De-Gang
PDF
导出引用
  • 太赫兹波介于微波与红外之间,当前太赫兹波主要在自由空间中传输,金属线波导以低损耗、低色散等突出的传输特性被广泛关注。本研究首先根据太赫兹波在不同金属线表面的趋肤深度选择铜线作为研究对象,然后基于太赫兹时域光谱系统搭建可调节式金属线波导传输特性测试光路,采集到通过不同半径、不同长度、不同端口状态的单/双铜线传输的时域信号,最后利用有限元方法对不同半径、不同形变程度的单/双根铜线在空气域的传输特性进行仿真。实验结果表明传输损耗会随着铜线长度的增加而增加,金属线越细传输速度越慢,端口形态对传输特性的影响不如长度变化对传输特性的影响明显,双金属线越粗传输速度越快。仿真结果表明太赫兹波在单根金属线上传输时,电场主要分布在金属线表面,金属线越细表面等离激元的模场面积越小;当金属线形变成椭圆时,模场主要分布长轴两端;当太赫兹波在双金属线中传输时,模场主要分布在两根金属线中间,且距离越远模场面积越小。本研究结合实验与仿真分析方法对单、双金属线的太赫兹传输特性进行研究,为后续开发高效太赫兹金属波导提供参考。
    Terahertz waves are between microwave and infrared, and currently, terahertz waves are mainly transmitted in free space. Metal wire waveguides have been widely studied for their outstanding transmission characteristics such as low loss and low dispersion. This study first selected copper wires as the research samples based on the skin depth of terahertz waves on different metal wire surfaces. Then, an adjustable metal wire waveguide transmission characteristic testing optical path was built based on the terahertz time-domain spectroscopy system. The time-domain signals transmitted through single/double copper wires with different radii, lengths, and port states were collected. Finally, the finite element method was used to analyze the transmission characteristics of single/double copper wires with different radii, lengths, and port states Simulate the transmission characteristics of single/double copper wires with different degrees of deformation in the air domain. The experimental results indicate that transmission loss increases with the increase of copper wire length, and the thinner the metal wire, the slower the transmission speed; The influence of port shape on transmission characteristics is not as significant as that of length variation; The thicker the bimetallic wire, the faster the transmission speed. The simulation results show that when terahertz waves are transmitted on a single metal wire, the electric field is mainly distributed on the surface of the metal wire, and the finer the metal wire, the smaller the mode field area of the surface plasmon; When the metal line becomes elliptical, the mode field is mainly distributed at both ends of the major axis; When terahertz waves are transmitted in bimetallic wires, the mode field is mainly distributed between the two wires, and the farther the distance, the smaller the mode field area. This study combines experimental and simulation analysis methods to study the terahertz transmission characteristics of single and bimetallic wires, providing a reference for the subsequent development of efficient terahertz metal waveguides.
  • [1]

    Sharma V, Garg N ,Sharma S, Sharma S, Bhatia V 2024 Frontiers in Signal Processing.3 1297945.

    [2]

    Hu L, Yang Z Q, Fang Y, Li Q F, Miao Y X, Lu X F, Sun X C, Zhang Y X 2023 Micromachines 14 1921

    [3]

    Gegen T N, Zhong K, Qiao H Z, Zhang X Z. Li J N, Xu D G, Yao J Q 2023 Acta Phys Sin 72 137 (in Chinese) [格根塔娜,钟凯,乔鸿展,张献中,李吉宁,徐德刚,姚建铨 2023 物理学报 72 137]

    [4]

    Mohammadzadeh S, Keil A, Kocybik M, Schwenson L M, Liebermeister L, Kohlhaas R, Globisch B, Freymann G V, Seewig J, Friederich F 2023 Laser Photonics Rev 17 2300396

    [5]

    Pałka N ,Kamiński K ,Maciejewski M , Pacek D, Świderski W 2024 Infrared Phys Techn 137 105163

    [6]

    Tao L 2021 China Security Protection Technology and Application 110 11.(in Chinese)[陶磊 2021 中国安全防范技术与应用 110 11]

    [7]

    Yang X, Wu T, Zhang L, Yang D, Wang N N, Song B, Gao X B 2019 Signal Process 160 202

    [8]

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys Sin 72 302 (in Chinese) [向星诚,马海贝,王磊,田达,张伟,张彩虹,吴敬波,范克彬,金飚兵,陈健,吴培亨 2023 物理学报 72 302]

    [9]

    Zhang X, Wang Y, Wang W Y, Zhang, X J, Luo F, Song B C, Zhang K, Shi W 2024 Acta Phys Sin 73 195 (in Chinese) [张向,王玥,张婉莹,张晓菊,罗帆,宋博晨,张狂,施卫 2024 物理学报 73 195]

    [10]

    Wang Y Y, Jiang B Z, Xu D G,Wang G Q, Wang Y F, Yao J Q 2021Acta Opt Sin 41 74 (in Chinese) [王与烨,蒋博周,徐德刚,王国强,王一凡,姚建铨 2021 光学学报 41 74]

    [11]

    Zheng Z P, Liu H Y, Zhao S Y, Jiang J W, Lu L 2023 Acta Phys Sin 72 34 (in Chinese) [郑转平,刘榆杭,赵帅宇,蒋杰伟 2023 物理学报 72 34]

    [12]

    Jin W, Hiroki N, Kenji S, Yuichi Y, Kenji S, Toshihiko K 2021 ECS Meeting Abstracts Meeting Abstracts 61 1637

    [13]

    Gregory B, Aleksandra G, Fedor K, Ilya L, Kirill M, Sergey V, Vyacheslav V 2021 6th international Conference onMetamaterials and Nanophotonics Tbilisi, Georgia September13-17, 2021 p012162

    [14]

    WANG C, Zheng Y H, Tan Z Y, He X Y, Cao J C 2022 Journal of Terahertz Science and Electronic Information Technology,20 241 (in Chinese) [王长,郑永辉,谭智勇,何晓勇,曹俊诚 2022太赫兹科学与电子信息学报 20 241]

    [15]

    Liu Y 2019 Ph.D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [刘燕 2019 博士学位论文(成都:电子科技大学)]

    [16]

    Wang K L, Mittleman D 2004 Nature 432 376

    [17]

    Cao Q, Jahns J 2005 Opt Express 13(2) 511

    [18]

    Mbonye M K, Astley V, Chan W L, Deibel J A, Mittleman D M 2007 Conference on Lasers and Electro-Optics. Baltimore, MD, USA May 6-11 2007 p1

    [19]

    Li S 2013 M.Sc. Dissertation (Shanghai: Shanghai University) (in Chinese) [李爽 2013 硕士学位论文 (上海:上海大学)]

    [20]

    Maier S A, Andrews S R, Moreno M L, García F J2006 Phys rev lett 97176805

    [21]

    Liang H W, Ruan S C, Zhang M, Su H 2010 Opt Commun 283 262

    [22]

    Balistreri G, Tomasino A, Dong J L, Yurtsever A, Stivala S, Azaña J, Morandotti R. 2021 Laser Photonics Rev 15 2100051

    [23]

    Gao H 2016 Ph. D. Dissertation (Shanghai: Shanghai University) (in Chinese) [高华 2016 博士学位论文(上海:上海大学)]

    [24]

    Zhong R B 2012 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology of China)(in Chinese) [钟任斌 2012 博士学位论文(成都:电子科技大学)]

  • [1] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, doi: 10.7498/aps.72.20221962
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, doi: 10.7498/aps.70.20212290
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, doi: 10.7498/aps.71.20212290
    [4] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, doi: 10.7498/aps.71.20220131
    [5] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, doi: 10.7498/aps.70.20201495
    [6] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 物理学报, doi: 10.7498/aps.70.20210445
    [7] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, doi: 10.7498/aps.69.20191531
    [8] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, doi: 10.7498/aps.68.20191055
    [9] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, doi: 10.7498/aps.68.20181664
    [10] 张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强. 太赫兹雷达散射截面的仿真与时域光谱测量. 物理学报, doi: 10.7498/aps.68.20190552
    [11] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, doi: 10.7498/aps.67.20182085
    [12] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, doi: 10.7498/aps.66.148705
    [13] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, doi: 10.7498/aps.65.080702
    [14] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究. 物理学报, doi: 10.7498/aps.63.020702
    [15] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, doi: 10.7498/aps.63.214102
    [16] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, doi: 10.7498/aps.63.029501
    [17] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, doi: 10.7498/aps.61.064102
    [18] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, doi: 10.7498/aps.59.2169
    [19] 陈华, 汪力. 金属导线偶合THz表面等离子体波. 物理学报, doi: 10.7498/aps.58.4605
    [20] 马士华, 施宇蕾, 徐新龙, 严 伟, 杨玉平, 汪 力. 用太赫兹时域光谱技术探测天冬酰胺的低频集体吸收频谱. 物理学报, doi: 10.7498/aps.55.4091
计量
  • 文章访问数:  132
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-09

/

返回文章
返回