搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究

胡梦珠 周思阳 韩琴 孙华 周丽萍 曾春梅 吴兆丰 吴雪梅

引用本文:
Citation:

紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究

胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅

Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides

Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei
PDF
导出引用
  • 研究了紫外表面等离激元在半导体纳米线-绝缘介质-金属构成的波导结构中的输运问题,借助有限元方法,对这种波导所支持导模的电磁能分布、有效折射率、传播长度和有效模场面积随电磁参数和几何结构参数的依赖关系进行了分析. 计算结果表明:以氧化锌纳米线作为增益介质,绝缘材料选择折射率小的空气,金属选择铝能够实现对输出光场的亚波长约束,有效模场面积达到λ2/100,同时保持低的传输损耗和高场强限制能力;有望用作纳米光源,使得相关的生物探测器件和医疗诊断设备实现更高的灵敏度和更小的体积.
    Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguide is investigated by means of the finite-element method. The field distribution, effective refractivity, propagation distance, and mode area of the hybrid mode supported by the waveguides were detailed analyzed, which are dependent on the dielectric constant and geometrical parameters. In order to achieve low propagation loss and subwavelength field confinement, several materials are calculated. Our investigation indicated that air and aluminum are better, which act as the insulator and metal respectively, and the effective mode area of such a waveguide can be as small as λ2/100. The results can help the development of nano-sized light sources which can enhance the sensitivity for bio-detection devices and diagnostic equipments.
    • 基金项目: 国家自然科学基金(批准号:11104197,61078045,11204266)、江苏高校优势学科建设工程和江苏省教育厅高校“青蓝工程”资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104197, 61078045, 11204266), the Priority Academic Program Development of Jiangsu Higher Education Institutions of China, and the QingLan Project Foundation of the Education Bureau of Jiangsu Province, China.
    [1]

    Rai P, Hartmann N, Berthelot J, Arocas J, Colas des Francs G, Hartschuh A, Bouhelier A 2013 Phys. Rev. Lett. 111 026804

    [2]

    Bavil M A, Sun X D 2013 Chin. Phys. B 22 047808

    [3]

    Chen S H, Chen J, Deng S Z, Xu N S 2010 Chin. Phys. B 19 037803

    [4]

    Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q 2012 Acta Phys. Sin. 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷晶华, 雷清泉 2012 物理学报 61 137301]

    [5]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [6]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [7]

    Xue W R, Guo Y N, Zhang W M 2009 Chin. Phys. B 18 2529

    [8]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [9]

    Gramotnev D K, Pile D F P 2004 Appl. Phys. Lett. 85 6323

    [10]

    Russella K J, Hu E L 2010 Appl. Phys. Lett. 97 163115

    [11]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nature Photon. 2 496

    [12]

    Liu J T, Xu B Z, Zhang J, Cai L K, Song G F 2012 Chin. Phys. B 21 107303

    [13]

    Noginow M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U 2009 Nature 460 1110

    [14]

    Nezhad M P, Simic A, Bondarenko O, Slutsky B, Mizrahi A, Feng L, Lomakin V, Fainman Y 2010 Nature Photon. 4 395

    [15]

    Liu F X, Tang C J, Pan J, Cao Z S, Wang Z L 2010 J. Phys. Chem. C 114 9871

    [16]

    Gather M C, Meerholz K, Danz N, Leosson K 2010 Nature Photon. 4 457

    [17]

    Kwon S H, Kang J H, Seassal C, Kim S K, Regreny P, Lee Y H, Lieber C M, Park H G 2010 Nano Lett. 10 3679

    [18]

    Huang H, Zhao Q, Jiao J, Liang G F, Huang X P 2013 Acta Phys. Sin. 62 135201 (in Chinese) [黄洪, 赵青, 焦蛟, 梁高峰, 黄小平 2013 物理学报 62 135201]

    [19]

    He J, Su Y M, Ma Y T, Chen Q, Wang R N, Ye Y, Ma Y, Liang H L 2012 Chin. Phys. B 21 076104

    [20]

    Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D 2001 Science 292 1897

    [21]

    Xu Y, Li Y P, Jin L, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 084207 (in Chinese) [徐韵, 李云鹏, 金璐, 马向阳, 杨德仁 2013 物理学报 62 084207]

    [22]

    Yong M 2000 Optics and Lasers Including Fibers and Optical Waveguides (Berlin: Springer) p275

  • [1]

    Rai P, Hartmann N, Berthelot J, Arocas J, Colas des Francs G, Hartschuh A, Bouhelier A 2013 Phys. Rev. Lett. 111 026804

    [2]

    Bavil M A, Sun X D 2013 Chin. Phys. B 22 047808

    [3]

    Chen S H, Chen J, Deng S Z, Xu N S 2010 Chin. Phys. B 19 037803

    [4]

    Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q 2012 Acta Phys. Sin. 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷晶华, 雷清泉 2012 物理学报 61 137301]

    [5]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [6]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [7]

    Xue W R, Guo Y N, Zhang W M 2009 Chin. Phys. B 18 2529

    [8]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [9]

    Gramotnev D K, Pile D F P 2004 Appl. Phys. Lett. 85 6323

    [10]

    Russella K J, Hu E L 2010 Appl. Phys. Lett. 97 163115

    [11]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nature Photon. 2 496

    [12]

    Liu J T, Xu B Z, Zhang J, Cai L K, Song G F 2012 Chin. Phys. B 21 107303

    [13]

    Noginow M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U 2009 Nature 460 1110

    [14]

    Nezhad M P, Simic A, Bondarenko O, Slutsky B, Mizrahi A, Feng L, Lomakin V, Fainman Y 2010 Nature Photon. 4 395

    [15]

    Liu F X, Tang C J, Pan J, Cao Z S, Wang Z L 2010 J. Phys. Chem. C 114 9871

    [16]

    Gather M C, Meerholz K, Danz N, Leosson K 2010 Nature Photon. 4 457

    [17]

    Kwon S H, Kang J H, Seassal C, Kim S K, Regreny P, Lee Y H, Lieber C M, Park H G 2010 Nano Lett. 10 3679

    [18]

    Huang H, Zhao Q, Jiao J, Liang G F, Huang X P 2013 Acta Phys. Sin. 62 135201 (in Chinese) [黄洪, 赵青, 焦蛟, 梁高峰, 黄小平 2013 物理学报 62 135201]

    [19]

    He J, Su Y M, Ma Y T, Chen Q, Wang R N, Ye Y, Ma Y, Liang H L 2012 Chin. Phys. B 21 076104

    [20]

    Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D 2001 Science 292 1897

    [21]

    Xu Y, Li Y P, Jin L, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 084207 (in Chinese) [徐韵, 李云鹏, 金璐, 马向阳, 杨德仁 2013 物理学报 62 084207]

    [22]

    Yong M 2000 Optics and Lasers Including Fibers and Optical Waveguides (Berlin: Springer) p275

  • [1] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [2] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [3] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [4] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [5] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [6] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [7] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [8] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [9] 姜美玲, 郑立恒, 池骋, 朱星, 方哲宇. 阴极荧光在表面等离激元研究领域的应用. 物理学报, 2017, 66(14): 144201. doi: 10.7498/aps.66.144201
    [10] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦. 物理学报, 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [11] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [12] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [13] 湛胜高, 梁斌明, 朱幸福, 陈家壁, 庄松林. 基于空气孔的光子晶体亚波长成像的特性研究. 物理学报, 2014, 63(15): 154212. doi: 10.7498/aps.63.154212
    [14] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究. 物理学报, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [15] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究. 物理学报, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [16] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [17] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束. 物理学报, 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [18] 童元伟, 田双, 庄松林. 等效折射率为非-1时的亚波长成像. 物理学报, 2011, 60(5): 054201. doi: 10.7498/aps.60.054201
    [19] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [20] 白璐, 汤双庆, 吴振森, 谢品华, 汪世美. 紫外波段多分散系气溶胶散射相函数随机抽样方法研究. 物理学报, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
计量
  • 文章访问数:  6354
  • PDF下载量:  1075
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-17
  • 修回日期:  2013-10-14
  • 刊出日期:  2014-01-05

/

返回文章
返回