搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面等离激元纳米聚焦研究进展

李盼

引用本文:
Citation:

表面等离激元纳米聚焦研究进展

李盼

Research progress of plasmonic nanofocusing

Li Pan
PDF
HTML
导出引用
  • 表面等离激元是束缚于金属纳米结构表面的电磁模式, 具有突破光学衍射极限和局域场增强等特点. 当表面等离激元沿一维锥形纳米结构表面传播时, 由于纳米聚焦效应, 使得等离激元能量汇聚于锥形结构的纳米尖端, 从而在该位置产生巨大的局域场增强. 这一现象为电磁场能量在纳米尺度的定向输送提供了十分有效的路径, 在分子光谱增强及传感领域得到广泛的应用. 本文对近年来表面等离激元纳米聚焦在纳米光子学领域的研究进展进行了综述, 并展望了这一领域未来的发展方向.
    Surface plasmons (SPs) are the surface waves of collective oscillations of free electrons at metal-dielectric interface, which have the ability to overcome the diffraction limit and to enhance the giant near-field. Tapered metallic nanostructures that support surface plasmons’ propagation are highly attractive to nanophotonic applications because of their waveguiding and field-focusing properties. This distinct morphologic feature enables the functionality known as nanofocusing. As a result, the plasmons can be guided in these nanostructures and finally focused on the sharp apex to greatly enhance the local field. This attractive effect can be widely used for effective remote-excitation detection/sensing. In this paper, we review various types of plasmonic nanofocusing structures operating in the visible and infrared region. We focus on their fundamentals, fabrications, and applications. Firstly, we discuss the mechanisms of the plasmonic nanofocusing. Then, the characteristics of various tapered metallic nanostructures of SPs are reviewed, including on-chip waveguides, metal tips and bottom-up fabricated nanowires. For applications, some prototypes of plasmonic nanofocusing for bio/chemo sensing are demonstrated. Finally, a summary and outlook of plasmonic waveguides are given.
      通信作者: 李盼, lipan01@cnu.edu.cn
      Corresponding author: Li Pan, lipan01@cnu.edu.cn
    [1]

    Barnes W 2006 J Opt. A: Pure Appl. Opt. 8 S87Google Scholar

    [2]

    Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A, Nuzzo R G 2008 Chem. Rev. 108 494Google Scholar

    [3]

    洪昕, 杜丹丹, 裘祖荣, 张国雄 2007 物理学报 56 7219Google Scholar

    Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219Google Scholar

    [4]

    黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖, 王京 2009 物理学报 58 1980

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980

    [5]

    谈春雷, 易永祥, 汪国平 2002 物理学报 51 1063Google Scholar

    Tan C L, Yi Y X, Wang G P 2002 Acta Phys. Sin. 51 1063Google Scholar

    [6]

    钟明亮, 李山, 熊祖洪, 张中月 2012 物理学报 61 027803Google Scholar

    Zhong M L, Li S, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 027803Google Scholar

    [7]

    Lei D Y, Aubry A, Luo Y, Maier S A, Pendry J B 2011 ACS Nano 5 597Google Scholar

    [8]

    Zhang J, Li S Z, Wu J S, Schatz G C, Mirkin C A 2009 Angew. Chem. Int. Ed. 121 7927Google Scholar

    [9]

    Yang C, Zhao H, Wang P, Li J, Tang P, Qu S, Lin F, Zhu X 2014 Chin. Phys. B 23 117302Google Scholar

    [10]

    Nurmohammadi T, Abbasian K, Yadipour R 2018 J. Opt. 20 055504Google Scholar

    [11]

    Duan H G, Fernández-Domínguez A I, Bosman M, Maier S A, Yang J K W 2012 Nano Lett. 12 1683Google Scholar

    [12]

    Brongersma M L, Shalaev V M 2010 Science 328 440Google Scholar

    [13]

    Huang J S, Callegari V, Geisler P, Brüning C, Kern J, Prangsma J C, Wu X F, Feichtner T, Ziegler J, Weinmann P, Kamp M, Forchel A, Biagioni P, Sennhauser U, Hecht B 2010 Nat. Commun. 1 150Google Scholar

    [14]

    Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W, Xu H 2018 Chem. Rev. 118 2882Google Scholar

    [15]

    Guo X, Ma Y G, Wang Y P, Tong L M 2013 Laser Photonics Rev. 7 855Google Scholar

    [16]

    Fang Y, Sun M 2015 Light Sci. Appl. 4 e294Google Scholar

    [17]

    Anderson L, Zhen Y, Payne C, Nordlander P, Hafner J 2013 Nano Lett. 13 6256Google Scholar

    [18]

    Burgos S, Lee H, Feigenbaum E, Briggs R, Atwater H 2014 Nano Lett. 14 3284Google Scholar

    [19]

    Li M, Zou C L, Ren X F, Xiong X, Cai Y J, Guo G P, Tong L M, Guo G C 2015 Nano Lett. 15 2380Google Scholar

    [20]

    Volkov V S, Bozhevolnyi S I, Devaux E, Laluet J Y, Ebbesen T W 2007 Nano Lett. 7 880Google Scholar

    [21]

    Wei H, Xu H X 2012 Nanophotonics 1 155Google Scholar

    [22]

    Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801Google Scholar

    [23]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387Google Scholar

    [24]

    Gramotnev D, Bozhevolnyi S 2010 Nat. Photonics 4 83Google Scholar

    [25]

    Shao L, Zhuo X, Wang J 2017 Adv. Mater. 30 1704338Google Scholar

    [26]

    Pile D, Gramotnev D 2005 Opt. Lett. 30 1186Google Scholar

    [27]

    Stockman M I 2004 Phys. Rev. Lett. 93 137404Google Scholar

    [28]

    Schmidt S, Piglosiewicz B, Sadiq D, Shirdel J, Lee J S, Vasa P, Park N, Kim D S, Lienau C 2012 ACS Nano 6 6040Google Scholar

    [29]

    Groß P, Esmann M, Becker S F, Vogelsang J, Talebi N, Lienau C 2016 Adv. Phys. X 1 297Google Scholar

    [30]

    Berweger S, Atkin J M, Olmon R L, Raschke M B 2012 J. Phys. Chem. Lett. 3 945Google Scholar

    [31]

    Berweger S, Atkin J M, Xu X J G, Olmon R L, Raschke M B 2011 Nano Lett. 11 4309Google Scholar

    [32]

    Lindquist N C, Nagpal P, Lesuffleur A, Norris D J, Oh S H 2010 Nano Lett. 10 1369Google Scholar

    [33]

    Luo Y, Chamanzar M, Apuzzo A, Salas-Montiel R, Nguyen K N, Blaize S, Adibi A 2015 Nano Lett. 15 849Google Scholar

    [34]

    Volkov V S, Bozhevolnyi S I, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Devaux E, Ebbesen T W 2009 Nano Lett. 9 1278Google Scholar

    [35]

    Zenin V A, Andryieuski A, Malureanu R, Radko I P, Volkov V S, Gramotnev D K, Lavrinenko A V, Bozhevolnyi S I 2015 Nano Lett. 15 8148Google Scholar

    [36]

    Søndergaard T, Novikov S M, Holmgaard T, Eriksen R L, Beermann J, Han Z H, Pedersen K, Bozhevolnyi S I 2012 Nat. Commun. 3 969Google Scholar

    [37]

    Choo H, Kim M K, Staffaroni M, Seok T J, Bokor J, Cabrini S, Schuck P J, Wu M C, Yablonovitch E 2012 Nat. Photonics 6 838Google Scholar

    [38]

    de Angelis F, Gentile F, Mecarini F, Das G, Moretti M, Candeloro P, Coluccio M L, Cojoc G, Accardo A, Liberale C, Zaccaria R P, Perozziello G, Tirinato L, Toma A, Cuda G, Cingolani R, Di Fabrizio E 2011 Nat. Photonics 5 682Google Scholar

    [39]

    de Angelis F, Das G, Candeloro P, Patrini M, Galli M, Bek A, Lazzarino M, Maksymov I, Liberale C, Andreani L C, Di Fabrizio E 2010 Nat. Nanotechnol. 5 67Google Scholar

    [40]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [41]

    Lu G, de Keersmaecker H, Su L, Kenens B, Rocha S, Fron E, Chen C, van Dorpe P, Mizuno H, Hofkens J, Hutchison J A, Uji-i H 2014 Adv. Mater. 26 5124Google Scholar

    [42]

    Neacsu C C, Berweger S, Olmon R L, Saraf L V, Ropers C, Raschke M B 2010 Nano Lett. 10 592Google Scholar

    [43]

    Sadiq D, Shirdel J, Lee J S, Selishcheva E, Park N, Lienau C 2011 Nano Lett. 11 1609Google Scholar

    [44]

    Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B 27 094216Google Scholar

    [45]

    Benz F, Schmidt M K, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A, Carnegie C, Ohadi H, de Nijs B, Esteban R, Aizpurua J, Baumberg J J 2016 Science 354 726Google Scholar

    [46]

    Raether H 1988 Springer Tr. Mod. Phys. 111 1Google Scholar

    [47]

    Zia R, Schuller J, Brongersma M 2006 Phys. Rev. B 74 165415Google Scholar

    [48]

    Verhagen E, Kuipers L, Polman A 2007 Nano Lett. 7 334Google Scholar

    [49]

    Nielsen M P, Lafone L, Rakovich A, Sidiropoulos T P H, Rahmani M, Maier S A, Oulton R F 2016 Nano Lett. 16 1410Google Scholar

    [50]

    Desiatov B, Goykhman I, Levy U 2014 Nano Lett. 14 648Google Scholar

    [51]

    Fang Y R, Zhang Z L, Sun M T 2016 Rev. Sci. Instrum. 87 033104Google Scholar

    [52]

    Mueller M, Kravtsov V, Paarmann A, Raschke M B, Ernstorfer R 2016 ACS Photonics 3 611Google Scholar

    [53]

    Vogelsang J, Talebi N, Hergert G, Woeste A, Gross P, Hartschuh A, Lienau C 2018 ACS Photonics 5 3584Google Scholar

    [54]

    Zhang S, Wei H, Bao K, Hakanson U, Halas N, Nordlander P, Xu H 2011 Phys. Rev. Lett. 107 096801Google Scholar

    [55]

    Sun Y, Mayers B, Herricks T, Xia Y 2003 Nano Lett. 3 955Google Scholar

    [56]

    Sun M, Zhang Z, Wang P, Li Q, Ma F, Xu H 2013 Light Sci. Appl. 2 e112Google Scholar

    [57]

    Hibbins, A P, Evans, B R, Sambles, J R 2005 Science 308 670Google Scholar

    [58]

    Li Z, Zhang S, Halas N, Nordlander P, Xu H 2011 Small 7 593Google Scholar

    [59]

    Li Z, Hao F, Huang Y, Fang Y, Nordlander P, Xu H 2009 Nano Lett. 9 4383Google Scholar

    [60]

    Li Q, Wei H, Xu H 2014 Chin. Phys. B 23 097302Google Scholar

    [61]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F, Krenn J 2005 Phys. Rev. Lett. 95 257403Google Scholar

    [62]

    Lal S, Hafner J H, Halas N J, Link S, Nordlander P 2012 Acc. Chem. Res. 45 1887Google Scholar

    [63]

    Paul A, Solis D, Bao K, Chang W S, Nauert S, Vidgerman L, Zubarev E R, Nordlander P, Link S 2012 ACS Nano 6 8105Google Scholar

    [64]

    Li Z P, Bao K, Fang Y R, Huang Y Z, Nordlander P, Xu H X 2010 Nano Lett. 10 1831Google Scholar

    [65]

    Wei H, Zhang S P, Tian X R, Xu H X 2013 Proc. Natl. Acad. Sci. U.S.A. 110 4494Google Scholar

    [66]

    Wild B, Cao L N, Sun Y G, Khanal B P, Zubarev E R, Gray S K, Scherer N F, Pelton M 2012 ACS Nano 6 472Google Scholar

    [67]

    Nauert S, Paul A, Zhen Y R, Solis D, Vigderman L, Chang W S, Zubarev E R, Nordlander P, Link S 2014 ACS Nano 8 572Google Scholar

    [68]

    Li P, Pan D, Yang L K, Wei H, He S L, Xu H X, Li Z P 2019 Nanoscale 11 2153Google Scholar

    [69]

    Hu J Q, Chen Q, Xie Z X, Han G B, Wang R H, Ren B, Zhang Y, Yang Z L, Tian Z Q 2004 Adv. Funct. Mater. 14 183Google Scholar

    [70]

    Yan W J, Yang L K, Chen J N, Wu Y Q, Wang P J, Li Z P 2017 Adv. Mater. 29 1702893Google Scholar

    [71]

    Cialla D, Maerz A, Boehme R, Theil F, Weber K, Schmitt M, Popp J 2012 Anal. Bioanal. Chem. 403 27Google Scholar

    [72]

    Baker G A, Moore D S 2005 Anal. Bioanal. Chem. 382 1751Google Scholar

    [73]

    Luo S, Sivashanmugan K, Liao J, Yao C, Peng H 2014 Biosens. Bioelectron. 61 232Google Scholar

    [74]

    Qian X, Nie S 2008 Chem. Soc. Rev. 37 912Google Scholar

    [75]

    Li X L, Xu W Q, Zhang J H, Jia H Y, Yang B, Zhao B, Li B F, Ozaki Y 2004 Langmuir 20 1298Google Scholar

    [76]

    Ling X, Fang W J, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y X, Zhang J, Kong J, Dresselhaus M S 2014 Nano Lett. 14 3033Google Scholar

    [77]

    Shanmukh S, Jones L, Driskell J, Zhao Y P, Dluhy R, Tripp R A 2006 Nano Lett. 6 2630Google Scholar

    [78]

    Lee Y H, Lee C K, Tan B, Tan J M R, Phang I Y, Ling X Y 2013 Nanoscale 5 6404Google Scholar

    [79]

    Zhao Y, Zhang X J, Ye J, Chen L M, Lau S P, Zhang W J, Lee S T 2011 ACS Nano 5 3027Google Scholar

    [80]

    Shen S X, Gao M, Ban R C, Chen H Y, Wang X J, Qian L H, Li J, Yang Z L 2018 Nanomaterials 8 1012Google Scholar

    [81]

    Meng L Y, Yang Z L 2018 Nanophotonics 7 1325Google Scholar

    [82]

    Shen S X, Meng L Y, Zhang Y J, Han J B, Ma Z W, Hu S, He Y H, Li J F, Ren B, Shih T M, Wang Z H, Yang Z L, Tian Z Q 2015 Nano Lett. 15 6716Google Scholar

    [83]

    Kravtsov V, Ulbricht R, Atkin J M, Raschke M B 2016 Nat. Nanotechnol. 11 459Google Scholar

    [84]

    Zhang Z L, Fang Y R, Wang W H, Chen L, Sun M T 2016 Adv. Sci. 3 1500215Google Scholar

    [85]

    Huang Y Z, Fang Y R, Zhang Z L, Zhu L, Sun M T 2014 Light Sci. Appl. 3 e199Google Scholar

    [86]

    Huang Y Z, Fang Y R, Sun M T 2011 J. Phys. Chem. C 115 3558Google Scholar

    [87]

    Chen S, Zhang Y J, Shih T M, Yang W M, Hu S, Hu X Y, Li J F, Ren B, Mao B W, Yang Z L, Tian Z Q 2018 Nano Lett. 18 2209Google Scholar

    [88]

    Fang Y R, Zhang Z L, Chen L, Sun M T 2015 Phys. Chem. Chem. Phys. 17 783Google Scholar

    [89]

    Zhang Z L, Sheng S X, Wang R M, Sun M T 2016 Anal. Chem. 88 9328Google Scholar

    [90]

    Sun M T, Zhang Z L, Zheng H R, Xu H X 2012 Sci. Rep. 2 647Google Scholar

    [91]

    Sun M T, Zhang Z L, Chen L, Sheng S X, Xu H X 2014 Adv. Opt. Mater. 2 74Google Scholar

    [92]

    Muskens O L, Giannini V, Sanchez-Gil J A, Rivas J G 2007 Nano Lett. 7 2871Google Scholar

    [93]

    Novotny L 1996 Appl. Phys. Lett. 69 3806Google Scholar

    [94]

    Matsuzaki K, Vassant S, Liu H W, Dutschke A, Hoffmann B, Chen X W, Christiansen S, Buck M R, Hollingsworth J A, Goetzinger S, Sandoghdar V 2017 Sci. Rep. 7 42307Google Scholar

    [95]

    Fasel S, Robin F, Moreno E, Erni D, Gisin N, Zbinden H 2005 Phys. Rev. Lett. 94 110501Google Scholar

    [96]

    Altewischer E, van Exter M P, Woerdman J P 2002 Nature 418 304Google Scholar

  • 图 1  纳米聚焦原理 (a) 空间光与金属表面等离激元色散关系对比[44]; (b) m = 0模式波矢与波导半径的依赖关系[29]; (c) 锥形波导上传播表面等离激元近场强度分布[27]

    Fig. 1.  Mechanism of the nanofocusing: (a) Dispersion relations for spatial light and surface plasmons[44]; (b) real part of the effective refractive index for the m = 0 mode as a function of the waveguide radius[29]; (c) near field distribution of tapered waveguide[27].

    图 2  纳米带波导 (a) 锥形金纳米带波导电镜图, 标尺为2 μm[35]; (b) 纳米带波导锥形结构电镜图, 标尺为200 nm[35]; (c) 锥形金纳米带波导表面等离激元传输的近场强度及相位的扫描成像, 标尺为1 μm[35]; (d) 锥形金纳米带波导增强上转换荧光成像, 其中(i)−(iii)分别对应波导的光学显微镜成像(i), 波长为660 nm的上转换荧光成像(ii) 以及波长为550 nm的上转换荧光成像(iii), 标尺为10 μm[48]; (e) V形金属薄膜波导电镜图[49]; (f) V形纳米结构金属薄膜波导增强量子点发光, 波导的光学成像(左侧), 量子点荧光成像(右侧)[49]; (g) 金属薄膜波导尖端处量子点荧光强度与该位置纳米间隙宽度的关系[49]; (h) 硅波导与V形纳米结构金属薄膜耦合结构近场分布的模拟计算结果[50]

    Fig. 2.  Nanostripes for nanofocusing waveguides: (a) SEM image of a fabricated tapered-stripe waveguide[35]; (b) zoomed-in tapered part of the waveguide, showing a taper and an antenna, scale bars correspond to 2 μm in (a) and 200 nm in (b)[35]; (c) SNOM images of topography y, measured SNOM near-field (amplitude |E| and phase Arg[E]), scale bars correspond to 1 μm[35]; (d) spatially resolved photoluminescence maps of Er upconversion emission, scale bars correspond to 10 μm[48]; (e) SEM images of a hybrid gap plasmon waveguide[49]; (f) optical image of the waveguide (left) and image of quantum dots emission (right)[49]; (g) enhancement factor of the quantum dots fluorescent and plasmon propagation length as a function of the gap width[49]; (h) calculated average electromagnetic field intensity within a hybrid silicon-metal nanowaveguide[50].

    图 3  MIM纳米聚焦波导 (a) MIM纳米聚焦波导示意图; (b) MIM纳米聚焦波导电镜图; (c) MIM纳米聚焦波导不同激发方式的多光子荧光成像, 其中红点表示激发光位置; (d) 表面等离激元在MIM波导上传播的强度分布探测与理论模拟结果 (本图内容引用自文献[37])

    Fig. 3.  MIM nanofocusing waveguide: (a) Schematic illustration of a MIM nanofocusing waveguide; (b) SEM image of a fabricated waveguide; (c) images of photoluminescence emission for four different excitation positions, red dots indicate the positions of excitation; (d) photoluminescence mapping of the near-field on the waveguide and top-view SEM image of the characterized sample and simulated near field intensity profile. Reproduced from Ref. [37].

    图 4  金属针尖用于制备扫描探针 (a) 金属针尖纳米聚焦波导的电镜及表面等离激元发光成像[42]; (b) 金属针尖作为近场扫描探针探测金纳米颗粒[43]; (c) 纳米聚焦效应增强针尖二次谐波探测[31]; (d) 飞秒脉冲激发针尖表面等离激元发射光谱, 脉冲时间16 fs, 发射峰半高宽60 nm, 光谱包括了发射光相位(蓝)、强度(红)和场强的时间分辨(绿)的信息[31]

    Fig. 4.  Metal tip as scanning probe: (a) Overlay of SEM and optical far-field image of a Au tip with grating for surface plasmon coupling of incident light[42]; (b) two-dimensional optical images of individual gold nanoparticles on a glass substrate recorded by near field optical microscopy[43]; (c) measurements based on apex localized SHG of adiabatically nanofocused surface plasmons[31]; (d) emission spectrum yields a 16 fs pulse for a 60 nm fwhm bandwidth with reconstructed spectral and temporal phase (blue), intensity (red), as well as the reconstructed temporal electric field transient (green)[31].

    图 5  金属探针激发电子射线 (a) 金属针尖发射超快电子射线示意图[52]; (b) 实验装置图[52]; (c) 激发光光谱能量密度分布[52]; (d) 超快电子射线扫描纳米碳管成像[53]; (e) 纳米碳管超快电子射线扫描成像中, 由于电子干涉形成条纹状的信号强度分布[53]

    Fig. 5.  Metal nanotip for electron emitting: (a) SEM image of a gold tip with a grating coupler 20 μm away from the apex with illustration of surface plasmon nanofocusing exciting ultrafast electron emission[52]; (b) corresponding electron pulse imaging setup using a 5 fs laser system for surface plasmon excitation[52]; (c) normalized spectral power density (SPD) of the ultrabroad band spectrum of the laser system[52]; (d) electrostatic field electron emission image a carbon nanotube[53]; (e) cross section along the white dashed line shown in (d), several interference fringes (black dots) are clearly visible[53].

    图 6  锥形纳米线光催化合成 (a) 微区汇聚光场催化反应示意图; (b) 反应产物的暗场光学成像; (c) 产物扫描电镜成像; (d) 合成的锥形银纳米线样品的扫描电镜成像; (e) 锥形纳米线直径分布的测量 (本图引用自文献[68])

    Fig. 6.  Laser-induced synthesis of tapered nanowires: (a) Schematic of the experimental setup; (b) dark-field optical image of the products, the white circle indicates the size of the laser spot; (c) SEM image of the products shown in (b); (d) close-up of a nanowire indicated by the yellow square in (c); (e) transverse diameter as a function of positions along the nanowire. Reproduced from Ref. [68].

    图 7  锥形纳米线表面等离激元传输特性 (a) 锥形纳米线扫描电镜成像, 标尺长度为 2 µm; (b) 纳米线表面等离激元传导远场光学成像, 激发光波长633 nm, 箭头表明激发光偏振方向; (c) 纳米线表面等离激元传导近场量子点荧光成像; (d) 锥形纳米线近场分布理论计算; (e) 传播模式的有效折射率与纳米线直径的关系; (f) 波节长度与纳米线直径的理论计算与实验数据图 (本图引用自文献[68])

    Fig. 7.  Near-field distributions of surface plasmons in tapered nanowires: (a) SEM image of a silver nanowire, the scale bar is 2 µm in length; (b) optical image of the nanowire under excitation of a focused laser beam at the thicker end, the incident polarization is marked by the green arrow; (c) quantum dots emission image of the nanowire; (d) calculated electric field distribution of propagating plasmons along the nanowire; (e) calculated effective refractive indices, nH0 and nH2, for the H0 and H2 modes as a function of the diameter; (f) beat length as a function of needle diameter, the black curve represents the calculated result using the effective refractive indices in (e), and the dots represent the experimental data with the diameter being the average value for each observed beat length. Reproduced from Ref. [68].

    图 8  纳米聚焦探针组装 (a) 锥形银纳米线通过光纤操控转移; (b), (c) 锥形纳米线探针的组装; (d) 通过光纤激发等离激元在纳米线探针上的传输及汇聚, 激发光波长532 nm, 图中的NN表示纳米针(nanoneedle) (本图引用自文献[68])

    Fig. 8.  Install a tapered nanowire onto optical fiber for scanning probe: (a) Optical bright field image of the synthesized naonowire and a tapered optical fiber controlled by oil hydraulic micromanipulator; (b), (c) pick up and install the synthesized needle into a tapered optical fiber; (d) launch SPs in the nanowire via optical fiber by “end-fired” configuration, a bright emission spot at the apex of the nanoneedle is clearly observed, the wavelength of the excitation light is 532 nm. Reproduced from Ref. [68].

    图 9  锥形纳米线用于纳米聚焦表面增强拉曼散射 (a) 用于远程激发拉曼增强的锥形纳米线电镜图; (b) 远程激发CV分子拉曼散射, 入射光波长633 nm, 偏振方向: 平行(红), 垂直(黑) (本图引用自文献[68])

    Fig. 9.  Tapered nanowire for nanofocusing SERS: (a) SEM image of a tapered nanowire for remote SERS excitation, the SPs propagation is launched at thick end, the remote-excitation nanofocusing SERS is detected at the thin end; (b) remote-excitation nanofocusing SERS of CV molecule under the longitudinal (red) and transverse polarization (black). Reproduced from Ref. [68].

    图 10  纳米聚焦增强拉曼光谱探针 (a), (b) 原子力显微镜悬臂上的纳米探针扫描电镜图[39]; (c) 纳米聚焦探针用于硅-石英基底的拉曼增强信号的扫描成像[39]; (d) 疏水表面被测分子汇聚于探针位置[38]; (e) 疏水表面及纳米聚焦探针的扫描电镜图[38]; (f) 纳米聚焦探针增强分子拉曼散射示意图[38]

    Fig. 10.  Probes of the nanofocusing SERS: (a), (b) SEM image of the device fabricated on a set of silicon nitride AFM cantilevers[39]; (c) Raman signal mapping at 520 cm–1 from a representative scanning area across a silicon nanocrystal/ SiOx step boundary[39]; (d) the sliding and evaporation mechanism of the drop on the super-hydrophobic surface[38]; (e) SEM images of the super-hydrophobic device with embedded plasmonic nanofocusing device[38]; (e) schematic of the nanofocusing SERS measurements[38].

    图 11  量子效率增强 (a) 纳米锥激发表面等离激元增强量子点荧光示意图; (b) 量子点荧光强度分布; (c) 量子点荧光寿命探测, 纳米锥激发(黑), 光纤激发(红) (本图引用自文献[94])

    Fig. 11.  Enhancement of the quantum efficiencies: (a) Schematics of the excitation and the detection of quantum dot fluorescence on a metal nanocone, the panels in the lower part show the spectra of the plasmon resonance (black, centered at 625 nm) and quantum dot emission (red); (b) fluorescence signal recorded from a quantum dot as a function of its position with respect to the nanocone; (c) fluorescence lifetime decay curves of a quantum dot on glass (black) and at the end of a glass fiber tip (red). Reproduced from Ref. [94].

  • [1]

    Barnes W 2006 J Opt. A: Pure Appl. Opt. 8 S87Google Scholar

    [2]

    Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A, Nuzzo R G 2008 Chem. Rev. 108 494Google Scholar

    [3]

    洪昕, 杜丹丹, 裘祖荣, 张国雄 2007 物理学报 56 7219Google Scholar

    Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219Google Scholar

    [4]

    黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖, 王京 2009 物理学报 58 1980

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980

    [5]

    谈春雷, 易永祥, 汪国平 2002 物理学报 51 1063Google Scholar

    Tan C L, Yi Y X, Wang G P 2002 Acta Phys. Sin. 51 1063Google Scholar

    [6]

    钟明亮, 李山, 熊祖洪, 张中月 2012 物理学报 61 027803Google Scholar

    Zhong M L, Li S, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 027803Google Scholar

    [7]

    Lei D Y, Aubry A, Luo Y, Maier S A, Pendry J B 2011 ACS Nano 5 597Google Scholar

    [8]

    Zhang J, Li S Z, Wu J S, Schatz G C, Mirkin C A 2009 Angew. Chem. Int. Ed. 121 7927Google Scholar

    [9]

    Yang C, Zhao H, Wang P, Li J, Tang P, Qu S, Lin F, Zhu X 2014 Chin. Phys. B 23 117302Google Scholar

    [10]

    Nurmohammadi T, Abbasian K, Yadipour R 2018 J. Opt. 20 055504Google Scholar

    [11]

    Duan H G, Fernández-Domínguez A I, Bosman M, Maier S A, Yang J K W 2012 Nano Lett. 12 1683Google Scholar

    [12]

    Brongersma M L, Shalaev V M 2010 Science 328 440Google Scholar

    [13]

    Huang J S, Callegari V, Geisler P, Brüning C, Kern J, Prangsma J C, Wu X F, Feichtner T, Ziegler J, Weinmann P, Kamp M, Forchel A, Biagioni P, Sennhauser U, Hecht B 2010 Nat. Commun. 1 150Google Scholar

    [14]

    Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W, Xu H 2018 Chem. Rev. 118 2882Google Scholar

    [15]

    Guo X, Ma Y G, Wang Y P, Tong L M 2013 Laser Photonics Rev. 7 855Google Scholar

    [16]

    Fang Y, Sun M 2015 Light Sci. Appl. 4 e294Google Scholar

    [17]

    Anderson L, Zhen Y, Payne C, Nordlander P, Hafner J 2013 Nano Lett. 13 6256Google Scholar

    [18]

    Burgos S, Lee H, Feigenbaum E, Briggs R, Atwater H 2014 Nano Lett. 14 3284Google Scholar

    [19]

    Li M, Zou C L, Ren X F, Xiong X, Cai Y J, Guo G P, Tong L M, Guo G C 2015 Nano Lett. 15 2380Google Scholar

    [20]

    Volkov V S, Bozhevolnyi S I, Devaux E, Laluet J Y, Ebbesen T W 2007 Nano Lett. 7 880Google Scholar

    [21]

    Wei H, Xu H X 2012 Nanophotonics 1 155Google Scholar

    [22]

    Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801Google Scholar

    [23]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387Google Scholar

    [24]

    Gramotnev D, Bozhevolnyi S 2010 Nat. Photonics 4 83Google Scholar

    [25]

    Shao L, Zhuo X, Wang J 2017 Adv. Mater. 30 1704338Google Scholar

    [26]

    Pile D, Gramotnev D 2005 Opt. Lett. 30 1186Google Scholar

    [27]

    Stockman M I 2004 Phys. Rev. Lett. 93 137404Google Scholar

    [28]

    Schmidt S, Piglosiewicz B, Sadiq D, Shirdel J, Lee J S, Vasa P, Park N, Kim D S, Lienau C 2012 ACS Nano 6 6040Google Scholar

    [29]

    Groß P, Esmann M, Becker S F, Vogelsang J, Talebi N, Lienau C 2016 Adv. Phys. X 1 297Google Scholar

    [30]

    Berweger S, Atkin J M, Olmon R L, Raschke M B 2012 J. Phys. Chem. Lett. 3 945Google Scholar

    [31]

    Berweger S, Atkin J M, Xu X J G, Olmon R L, Raschke M B 2011 Nano Lett. 11 4309Google Scholar

    [32]

    Lindquist N C, Nagpal P, Lesuffleur A, Norris D J, Oh S H 2010 Nano Lett. 10 1369Google Scholar

    [33]

    Luo Y, Chamanzar M, Apuzzo A, Salas-Montiel R, Nguyen K N, Blaize S, Adibi A 2015 Nano Lett. 15 849Google Scholar

    [34]

    Volkov V S, Bozhevolnyi S I, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Devaux E, Ebbesen T W 2009 Nano Lett. 9 1278Google Scholar

    [35]

    Zenin V A, Andryieuski A, Malureanu R, Radko I P, Volkov V S, Gramotnev D K, Lavrinenko A V, Bozhevolnyi S I 2015 Nano Lett. 15 8148Google Scholar

    [36]

    Søndergaard T, Novikov S M, Holmgaard T, Eriksen R L, Beermann J, Han Z H, Pedersen K, Bozhevolnyi S I 2012 Nat. Commun. 3 969Google Scholar

    [37]

    Choo H, Kim M K, Staffaroni M, Seok T J, Bokor J, Cabrini S, Schuck P J, Wu M C, Yablonovitch E 2012 Nat. Photonics 6 838Google Scholar

    [38]

    de Angelis F, Gentile F, Mecarini F, Das G, Moretti M, Candeloro P, Coluccio M L, Cojoc G, Accardo A, Liberale C, Zaccaria R P, Perozziello G, Tirinato L, Toma A, Cuda G, Cingolani R, Di Fabrizio E 2011 Nat. Photonics 5 682Google Scholar

    [39]

    de Angelis F, Das G, Candeloro P, Patrini M, Galli M, Bek A, Lazzarino M, Maksymov I, Liberale C, Andreani L C, Di Fabrizio E 2010 Nat. Nanotechnol. 5 67Google Scholar

    [40]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [41]

    Lu G, de Keersmaecker H, Su L, Kenens B, Rocha S, Fron E, Chen C, van Dorpe P, Mizuno H, Hofkens J, Hutchison J A, Uji-i H 2014 Adv. Mater. 26 5124Google Scholar

    [42]

    Neacsu C C, Berweger S, Olmon R L, Saraf L V, Ropers C, Raschke M B 2010 Nano Lett. 10 592Google Scholar

    [43]

    Sadiq D, Shirdel J, Lee J S, Selishcheva E, Park N, Lienau C 2011 Nano Lett. 11 1609Google Scholar

    [44]

    Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B 27 094216Google Scholar

    [45]

    Benz F, Schmidt M K, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A, Carnegie C, Ohadi H, de Nijs B, Esteban R, Aizpurua J, Baumberg J J 2016 Science 354 726Google Scholar

    [46]

    Raether H 1988 Springer Tr. Mod. Phys. 111 1Google Scholar

    [47]

    Zia R, Schuller J, Brongersma M 2006 Phys. Rev. B 74 165415Google Scholar

    [48]

    Verhagen E, Kuipers L, Polman A 2007 Nano Lett. 7 334Google Scholar

    [49]

    Nielsen M P, Lafone L, Rakovich A, Sidiropoulos T P H, Rahmani M, Maier S A, Oulton R F 2016 Nano Lett. 16 1410Google Scholar

    [50]

    Desiatov B, Goykhman I, Levy U 2014 Nano Lett. 14 648Google Scholar

    [51]

    Fang Y R, Zhang Z L, Sun M T 2016 Rev. Sci. Instrum. 87 033104Google Scholar

    [52]

    Mueller M, Kravtsov V, Paarmann A, Raschke M B, Ernstorfer R 2016 ACS Photonics 3 611Google Scholar

    [53]

    Vogelsang J, Talebi N, Hergert G, Woeste A, Gross P, Hartschuh A, Lienau C 2018 ACS Photonics 5 3584Google Scholar

    [54]

    Zhang S, Wei H, Bao K, Hakanson U, Halas N, Nordlander P, Xu H 2011 Phys. Rev. Lett. 107 096801Google Scholar

    [55]

    Sun Y, Mayers B, Herricks T, Xia Y 2003 Nano Lett. 3 955Google Scholar

    [56]

    Sun M, Zhang Z, Wang P, Li Q, Ma F, Xu H 2013 Light Sci. Appl. 2 e112Google Scholar

    [57]

    Hibbins, A P, Evans, B R, Sambles, J R 2005 Science 308 670Google Scholar

    [58]

    Li Z, Zhang S, Halas N, Nordlander P, Xu H 2011 Small 7 593Google Scholar

    [59]

    Li Z, Hao F, Huang Y, Fang Y, Nordlander P, Xu H 2009 Nano Lett. 9 4383Google Scholar

    [60]

    Li Q, Wei H, Xu H 2014 Chin. Phys. B 23 097302Google Scholar

    [61]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F, Krenn J 2005 Phys. Rev. Lett. 95 257403Google Scholar

    [62]

    Lal S, Hafner J H, Halas N J, Link S, Nordlander P 2012 Acc. Chem. Res. 45 1887Google Scholar

    [63]

    Paul A, Solis D, Bao K, Chang W S, Nauert S, Vidgerman L, Zubarev E R, Nordlander P, Link S 2012 ACS Nano 6 8105Google Scholar

    [64]

    Li Z P, Bao K, Fang Y R, Huang Y Z, Nordlander P, Xu H X 2010 Nano Lett. 10 1831Google Scholar

    [65]

    Wei H, Zhang S P, Tian X R, Xu H X 2013 Proc. Natl. Acad. Sci. U.S.A. 110 4494Google Scholar

    [66]

    Wild B, Cao L N, Sun Y G, Khanal B P, Zubarev E R, Gray S K, Scherer N F, Pelton M 2012 ACS Nano 6 472Google Scholar

    [67]

    Nauert S, Paul A, Zhen Y R, Solis D, Vigderman L, Chang W S, Zubarev E R, Nordlander P, Link S 2014 ACS Nano 8 572Google Scholar

    [68]

    Li P, Pan D, Yang L K, Wei H, He S L, Xu H X, Li Z P 2019 Nanoscale 11 2153Google Scholar

    [69]

    Hu J Q, Chen Q, Xie Z X, Han G B, Wang R H, Ren B, Zhang Y, Yang Z L, Tian Z Q 2004 Adv. Funct. Mater. 14 183Google Scholar

    [70]

    Yan W J, Yang L K, Chen J N, Wu Y Q, Wang P J, Li Z P 2017 Adv. Mater. 29 1702893Google Scholar

    [71]

    Cialla D, Maerz A, Boehme R, Theil F, Weber K, Schmitt M, Popp J 2012 Anal. Bioanal. Chem. 403 27Google Scholar

    [72]

    Baker G A, Moore D S 2005 Anal. Bioanal. Chem. 382 1751Google Scholar

    [73]

    Luo S, Sivashanmugan K, Liao J, Yao C, Peng H 2014 Biosens. Bioelectron. 61 232Google Scholar

    [74]

    Qian X, Nie S 2008 Chem. Soc. Rev. 37 912Google Scholar

    [75]

    Li X L, Xu W Q, Zhang J H, Jia H Y, Yang B, Zhao B, Li B F, Ozaki Y 2004 Langmuir 20 1298Google Scholar

    [76]

    Ling X, Fang W J, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y X, Zhang J, Kong J, Dresselhaus M S 2014 Nano Lett. 14 3033Google Scholar

    [77]

    Shanmukh S, Jones L, Driskell J, Zhao Y P, Dluhy R, Tripp R A 2006 Nano Lett. 6 2630Google Scholar

    [78]

    Lee Y H, Lee C K, Tan B, Tan J M R, Phang I Y, Ling X Y 2013 Nanoscale 5 6404Google Scholar

    [79]

    Zhao Y, Zhang X J, Ye J, Chen L M, Lau S P, Zhang W J, Lee S T 2011 ACS Nano 5 3027Google Scholar

    [80]

    Shen S X, Gao M, Ban R C, Chen H Y, Wang X J, Qian L H, Li J, Yang Z L 2018 Nanomaterials 8 1012Google Scholar

    [81]

    Meng L Y, Yang Z L 2018 Nanophotonics 7 1325Google Scholar

    [82]

    Shen S X, Meng L Y, Zhang Y J, Han J B, Ma Z W, Hu S, He Y H, Li J F, Ren B, Shih T M, Wang Z H, Yang Z L, Tian Z Q 2015 Nano Lett. 15 6716Google Scholar

    [83]

    Kravtsov V, Ulbricht R, Atkin J M, Raschke M B 2016 Nat. Nanotechnol. 11 459Google Scholar

    [84]

    Zhang Z L, Fang Y R, Wang W H, Chen L, Sun M T 2016 Adv. Sci. 3 1500215Google Scholar

    [85]

    Huang Y Z, Fang Y R, Zhang Z L, Zhu L, Sun M T 2014 Light Sci. Appl. 3 e199Google Scholar

    [86]

    Huang Y Z, Fang Y R, Sun M T 2011 J. Phys. Chem. C 115 3558Google Scholar

    [87]

    Chen S, Zhang Y J, Shih T M, Yang W M, Hu S, Hu X Y, Li J F, Ren B, Mao B W, Yang Z L, Tian Z Q 2018 Nano Lett. 18 2209Google Scholar

    [88]

    Fang Y R, Zhang Z L, Chen L, Sun M T 2015 Phys. Chem. Chem. Phys. 17 783Google Scholar

    [89]

    Zhang Z L, Sheng S X, Wang R M, Sun M T 2016 Anal. Chem. 88 9328Google Scholar

    [90]

    Sun M T, Zhang Z L, Zheng H R, Xu H X 2012 Sci. Rep. 2 647Google Scholar

    [91]

    Sun M T, Zhang Z L, Chen L, Sheng S X, Xu H X 2014 Adv. Opt. Mater. 2 74Google Scholar

    [92]

    Muskens O L, Giannini V, Sanchez-Gil J A, Rivas J G 2007 Nano Lett. 7 2871Google Scholar

    [93]

    Novotny L 1996 Appl. Phys. Lett. 69 3806Google Scholar

    [94]

    Matsuzaki K, Vassant S, Liu H W, Dutschke A, Hoffmann B, Chen X W, Christiansen S, Buck M R, Hollingsworth J A, Goetzinger S, Sandoghdar V 2017 Sci. Rep. 7 42307Google Scholar

    [95]

    Fasel S, Robin F, Moreno E, Erni D, Gisin N, Zbinden H 2005 Phys. Rev. Lett. 94 110501Google Scholar

    [96]

    Altewischer E, van Exter M P, Woerdman J P 2002 Nature 418 304Google Scholar

  • [1] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [5] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [6] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [7] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [8] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析. 物理学报, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [9] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [10] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究. 物理学报, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [11] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [12] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [13] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [14] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [15] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [16] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [17] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应. 物理学报, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [18] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究. 物理学报, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [19] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [20] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦. 物理学报, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
计量
  • 文章访问数:  11966
  • PDF下载量:  496
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-18
  • 修回日期:  2019-05-19
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回