搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离激元能带结构与应用

刘亮 韩德专 石磊

引用本文:
Citation:

等离激元能带结构与应用

刘亮, 韩德专, 石磊

Plasmonic band structures and its applications

Liu Liang, Han De-Zhuan, Shi Lei
PDF
HTML
导出引用
  • 近些年来, 表面等离激元因其具有强局域、亚波长和高场强等特殊的光学性质而备受关注, 在化学、生物、通信、纳米能源等各领域得到了广泛的研究. 为了更好地控制表面等离激元的激发、传播和辐射, 具有能带结构的周期性表面等离激元结构被广泛的研究. 本文全面综述了具有等离激元能带的微纳结构、能带的产生机制与其特殊的性质, 包括连续谱中的束缚态、波导、全带隙、拓扑等. 在此基础上, 基于等离激元能带设计所开展的一些应用也予以系统总结. 最后, 随着新材料的发现, 本文还简要介绍了二维材料石墨烯等离激元能带和它的一些应用.
    Due to its special optical properties the surface plasmon polariton (SPP) has been applied to many fields such as chemistry, biology, communication, nano energy. The more in-depth researches on plasmonic band structures can conduce to understanding more the properties of plasmonic micro- and nano-structures. In this review, we first introduce some metal structures which have plasmonic band structures. Then, we review some unique properties of plasmonic band structures including bound state in the continuum, waveguide, complete band gap, topology, etc. Based on the above properties, the plasmonic applications are introduced. Finally, we briefly introduce the band structures of graphene-based plasmonics and its applications.
      通信作者: 韩德专, dzhan@cqu.edu.cn ; 石磊, lshi@fudan.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11774063,11727811,91750102)
      Corresponding author: Han De-Zhuan, dzhan@cqu.edu.cn ; Shi Lei, lshi@fudan.edu.cn
    [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [2]

    Ruan Z, Qiu M 2006 Phys. Rev. Lett. 96 233901Google Scholar

    [3]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [4]

    Tittl A, Giessen H, Liu N 2014 Nanophotonics 3 3Google Scholar

    [5]

    Tong L W, Wei Hong, Zhang S P, Xu H X 2014 Sensors 14 7959Google Scholar

    [6]

    Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou Z K, Wang X, Jin C, Wang J 2013 Nat. Commun. 4 2381Google Scholar

    [7]

    Yang W H, Zhang C, Sun S, Jing J, Song Q, Xiao S 2017 Nanoscale 9 8907Google Scholar

    [8]

    Dorfmüller J, Vogelgesang R, Khunsin W, Rockstuhl C, Etrich C, Kern K 2010 Nano Lett. 10 3596Google Scholar

    [9]

    Chen X W, Agio M, Sandoghdar V 2012 Phys. Rev. Lett. 108 233001Google Scholar

    [10]

    Liu W, Miroshnichenko A E, Neshev D N, Kivshar Y S 2012 ACS Nano 6 5489Google Scholar

    [11]

    Alonso-González P, Albella P, Neubrech F, Huck C, Chen J, Golmar F, Casanova F, Hueso L E, Pucci A, Aizpurua J, Hillenbrand R 2013 Phys. Rev. Lett. 110 203902Google Scholar

    [12]

    He X, Tang J, Hu H, Shi J, Guan Z, Zhang S, Xu H 2019 ACS Nano 13 14041Google Scholar

    [13]

    Zhang X, Liu Z 2008 Nat. Mater. 7 435Google Scholar

    [14]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [15]

    Nie S M, Emery S R 1997 Science 275 1102Google Scholar

    [16]

    Zhang W, C ui, Yeo BS , Schmid T, Hafner C, Zenobi R 2007 Nano Lett. 7 1401Google Scholar

    [17]

    Wang X, Zhu X, Chen Y, Zheng M, Xiang Q, Tang Z, Zhang G, Duan H 2017 ACS Appl. Mater. Interfaces 9 31102Google Scholar

    [18]

    Yang X, Sun Z, Low T, Hu H, Guo X, García de Abajo F J, Avouris P, Dai Q 2018 Adv. Mater. 30 1704896Google Scholar

    [19]

    Ma R M, Oulton R F, Sorger V J, Zhang X 2013 Laser Photonics Rev. 7 1Google Scholar

    [20]

    Zhang H, Tang D Y, Zhao L M, Bao Q L, Loh K P, Lin B, Tjin S C 2010 Laser Phys. Lett. 7 591Google Scholar

    [21]

    Bai B, Svirko Y, Turunen J, Vallius T 2007 Phys. Rev. A 76 023811Google Scholar

    [22]

    Yu P, Li J, Tang C, Cheng H, Liu Z, Li Z, Liu Z, Gu C, Li J, Chen S, Tian J 2016 Light: Sci. Appl. 5 e16096Google Scholar

    [23]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photonics Rev. 9 713Google Scholar

    [24]

    李雄, 马晓亮, 罗先刚 2017 光电工程 44 255Google Scholar

    Li X, Ma X, Luo X 2017 Opto-Electron. Eng. 44 255Google Scholar

    [25]

    Li G, Sartorello G, Chen S, Nicholls L H, Li K F, Zentgraf T, Zhang S, Zayats A V 2018 Laser Photonics Rev. 12 1800034Google Scholar

    [26]

    Fan R, Xiong B, Peng R W, Wang M 2019 Adv. Mater. 32 1904646Google Scholar

    [27]

    He Y, Wen Z, Chen L, Li Y, Ning Y, Chen G 2014 IEEE Photonics Technol. Lett. 26 1801Google Scholar

    [28]

    Akahane Y, Asano T, Song B S, Noda S 2003 Nature 425 944Google Scholar

    [29]

    Song B S, Noda S, Asano T, Akahane Y 2005 Nat. Mater. 4 207Google Scholar

    [30]

    McNab S J, Moll N, Vlasov Y A 2003 Opt. Express 11 2927Google Scholar

    [31]

    Faolain L O, Yuan X, Mcintyre D, Thoms S, Chong H, Rue R M D L, Krauss T F 2006 Electron. Lett. 42 1454Google Scholar

    [32]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77Google Scholar

    [33]

    Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S 1998 Phys. Rev. B 58 R10096Google Scholar

    [34]

    Wonjoo S, Zheng W, Shanhui F 2004 IEEE J. Quantum Electron. 40 1511Google Scholar

    [35]

    Imada M, Noda S, Chutinan A, Tokuda T, Murata M, Sasaki G 1999 Appl. Phys. Lett. 75 316Google Scholar

    [36]

    Zheng W, Ren G, Xing M, Chen W, Liu A, Zhou W, Baba T, Nozaki K, Chen L 2008 Appl. Phys. Lett. 93 081109Google Scholar

    [37]

    Huang X, Lai Y, Hang Z H, Zheng H, Chan C T 2011 Nat. Mater. 10 582Google Scholar

    [38]

    Yao Z, Luo J, Lai Y 2016 Opt. Lett. 41 5106Google Scholar

    [39]

    Hea C, Sun X, Liu X, Lu M, Chen Y, Feng L, Chen Y 2016 Proc. Natl. Acad. Sci. U.S.A. 113 4924Google Scholar

    [40]

    Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y, Scherer A 2011 Science 333 729Google Scholar

    [41]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772Google Scholar

    [42]

    Wang H, Zhang X 2011 Phys. Rev. A 83 053820Google Scholar

    [43]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photonics 8 821Google Scholar

    [44]

    Song D, Paltoglou V, Liu S, Zhu Y, Gallardo D, Tang L, Xu J, Ablowitz M, Efremidis N K, Chen Z 2015 Nat. Commun. 6 6272Google Scholar

    [45]

    Deng H, Chen X, Panoiu N C, Ye F 2016 Opt. Lett. 41 4281Google Scholar

    [46]

    Wu X, Meng Y, Tian J, Huang Y, Xiang H, Han D, Wen W 2017 Nat. Commun. 8 1304Google Scholar

    [47]

    Chen X D, Zhao F L, Chen M, Dong J W 2017 Phys. Rev. B 96 020202Google Scholar

    [48]

    Wu Y, Hu X, Gong Q 2018 Phys. Rev. Mater. 2 122201Google Scholar

    [49]

    Peng L, Chen Y, Yang Y, Wang Z, Yu F, Wang G, Shen N H, Zhang B, Soukoulis C M, Chen H 2018 Laser Photonics Rev. 12 1800002Google Scholar

    [50]

    Yang Y, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2018 Phys. Rev. Lett. 120 217401Google Scholar

    [51]

    Hu C, Li Z, Tong R, Wu X, Xia Z, Wang L, Li S, Huang Y, Wang S, Hou B, Chan C T, Wen W 2018 Phys. Rev. Lett. 121 024301Google Scholar

    [52]

    Xie B, Su G, Wang H, Su H, Shen X, Zhan P, Lu M, Wang Z, Chen Y 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [53]

    Song W, Sun W, Chen C, Song Q, Xiao S, Zhu S, Li T 2019 Phys. Rev. Lett. 123 165701Google Scholar

    [54]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2008 Phys. Rev. Lett. 100 013905Google Scholar

    [55]

    Yu Z, Veronis G, Wang Z, Fan S 2008 Phys. Rev. Lett. 100 023902Google Scholar

    [56]

    Lu L, Gao H, Wang Z 2018 Nat. Commun. 9 5384Google Scholar

    [57]

    Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F, Liu Z 2016 Nat. Phys. 13 369Google Scholar

    [58]

    Hu X, Chan C T, Ho K, Zi J 2011 Phys. Rev. Lett. 106 174501Google Scholar

    [59]

    Bi Y, Feng J, Li Y, Zhang X, Liu Y, Jin Y, Sun H 2013 Adv. Mater. 25 6969Google Scholar

    [60]

    Wang Y, Liu H, Zhu J 2019 APL Mater. 7 080906Google Scholar

    [61]

    Najiminaini M, Vasefi F, Kaminska B, Carson J J L 2011 Opt. Express 19 26186Google Scholar

    [62]

    Shi L, Hakala T K, Rekola H T, Martikainen J P, Moerland R J, Torma P 2014 Phys. Rev. Lett. 112 153002Google Scholar

    [63]

    Zhang Y W, Chen A, Liu W Z, Hsu C W, Wang B, Guan F, Liu X H, Shi L, Lu L, Zi J 2018 Phys. Rev. Lett. 120 186103Google Scholar

    [64]

    Yu X D, Shi L, Han D Z, Zi J, Braun P V 2010 Adv. Funct. Mater. 20 1910Google Scholar

    [65]

    Erementchouk M, Joy S R, Mazumder P 2016 Proc. R. Soc. A 472 20160616Google Scholar

    [66]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [67]

    Wu F, Han D, Li X, Liu X, Zi J 2008 Opt. Express 16 6619Google Scholar

    [68]

    Fung K H, Chan C T 2007 Opt. Lett. 32 973Google Scholar

    [69]

    Lai Y, Han D Z, Fung K H, Zhang Z Q, Chan C T Quadrupole Bands and Dirac-Point-like Dispersions in Metal Nanoparticle Chains (Hong Kong: Hong Kong University of Science and Technology) Unpublished

    [70]

    Han D, Lai Y, Fung K, Zhang Z, Chan C T 2009 Phys. Rev. B 79 195444Google Scholar

    [71]

    Liu J, Ding L, Zhao C, Liang C, Xiao Y, Zhang J, Xu W 2019 IEEE Photonics J. 11 1Google Scholar

    [72]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Phys. 1 16048Google Scholar

    [73]

    Marinica D C, Borisov A G, Shabanov S V 2008 Phys. Rev. Lett. 100 183902Google Scholar

    [74]

    Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljačić M 2013 Nature 499 188Google Scholar

    [75]

    Yang Y, Peng C, Liang Y, Li Z, Noda S 2014 Phys. Rev. Lett. 113 037401Google Scholar

    [76]

    Dai S, Liu L, Han D, Zi J 2018 Phys. Rev. B 98 081405(R)Google Scholar

    [77]

    Cumpsty N A, Whitehead D S 1971 J. Sound Vib. 18 353Google Scholar

    [78]

    Xiao Y X, Ma G, Zhang Z Q, Chan C T 2017 Phys. Rev. Lett. 118 166803Google Scholar

    [79]

    Porter R, Evans D V 2005 Wave Motion 43 29Google Scholar

    [80]

    Hirose K, Liang Y, Kurosaka Y, Watanabe A, Sugiyama T, Noda S 2014 Nat. Photonics 8 406Google Scholar

    [81]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017 Nature 541 196Google Scholar

    [82]

    Yanik A A, Cetin A E, Huang M, Artar A, Mousavi S H, Khanikaev A, Connor J H, Shvets G, Altug H 2011 Proc. Natl. Acad. Sci. U. S. A. 108 11784Google Scholar

    [83]

    Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [84]

    Liu Z, Xu Y, Lin Y, Xiang J, Feng T, Cao Q, Li J, Lan S, Liu J 2019 Phys. Rev. Lett. 123 253901Google Scholar

    [85]

    He Y, Guo G, Feng T, Xu Y, Miroshnichenko A E 2018 Phys. Rev. B 98 161112Google Scholar

    [86]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231Google Scholar

    [87]

    Gao X, Hsu C W, Zhen B, Lin X, Joannopoulos J D, Soljacic M, Chen H 2016 Sci. Rep. 6 31908Google Scholar

    [88]

    Bulgakov E N, Maksimov D N 2017 Phys. Rev. Lett. 118 267401Google Scholar

    [89]

    Zhen B, Hsu C W, Lu L, Stone A D, Soljacic M 2014 Phys. Rev. Lett. 113 257401Google Scholar

    [90]

    Doeleman H M, Monticone F, den Hollander W, Alu A, Koenderink A F 2018 Nat. Photonics 12 397Google Scholar

    [91]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331Google Scholar

    [92]

    Brongersma M L, Hartman J W, Atwater H A 2000 Phys. Rev. B 62 R16356Google Scholar

    [93]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A 2003 Nat. Mater. 2 229Google Scholar

    [94]

    Li K, Stockman M I, Bergman D J 2003 Phys. Rev. Lett. 91 227402Google Scholar

    [95]

    Wu F, Han D, Hu X, Liu X, Zi J 2009 Journal of Physics: Condensed Matter 21 185010Google Scholar

    [96]

    Burgos S P, de Waele R, Polman A, Atwater H A 2010 Nat. Mater. 9 407Google Scholar

    [97]

    Han D, Lai Y, Zi J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 123904Google Scholar

    [98]

    Weick G, Woollacott C, Barnes W L, Hess O, Mariani E 2013 Phys. Rev. Lett. 110 106801Google Scholar

    [99]

    Shen X P, Cui T J, Martin-Cano D, Garcia-Vidal F J 2013 Proc. Natl. Acad. Sci. U.S.A. 110 40Google Scholar

    [100]

    Xiang H, Meng Y, Zhang Q, Qin F F, Xiao J J, Han D, Wen W 2015 Opt. Commun. 356 59Google Scholar

    [101]

    Liu L, Yang C, Yang J, Xiang H, Han D 2017 J. Opt. Soc. Am. B 34 1130Google Scholar

    [102]

    Shen X, Cui T J 2013 Appl. Phys. Lett. 102 211909Google Scholar

    [103]

    Gao X, Zhou L, Yu X Y, Cao W P, Li H O, Ma H F, Cui T J 2015 Opt. Express 23 23270Google Scholar

    [104]

    Bravo-Abad J, Degiron A, Przybilla F, Genet C, García-Vidal F J, Martín-Moreno L, Ebbesen T W 2006 Nat. Phys. 2 120Google Scholar

    [105]

    Yi J M, Cuche A, Devaux E, Genet C, Ebbesen T W 2014 ACS Photonics 1 365Google Scholar

    [106]

    Zhu X, Vannahme C, Højlund-Nielsen E, Mortensen N A, Kristensen A 2016 Nat. Nanotechnol. 11 325Google Scholar

    [107]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [108]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

    [109]

    Li G, Chen X, Li O, Shao C, Jiang Y, Huang L, Ni B, Hu W, Lu W 2012 J. Phys. D: Appl. Phys. 45 205102Google Scholar

    [110]

    Schokker A H, Koenderink A F 2014 Phys. Rev. B 90 155452Google Scholar

    [111]

    Stehr J, Crewett J, Schindler F, Sperling R, von Plessen G, Lemmer U, Lupton J M, Klar T A, Feldmann J, Holleitner A W, Forster M, Scherf U 2003 Adv. Mater. 15 1726Google Scholar

    [112]

    Nau D, Seidel A, Orzekowsky R B, Lee S H, Deb S, Giessen H 2010 Opt. Lett. 35 3150Google Scholar

    [113]

    Shi L, Yuan X, Zhang Y, Hakala T, Yin S, Han D, Zhu X, Zhang B, Liu X, Torma P, Lu W, Zi J 2014 Laser Photonics Rev. 8 717Google Scholar

    [114]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392Google Scholar

    [115]

    Luo X, Qiu T, Lu W, Ni Z 2013 Mater. Sci. Eng., R 74 351Google Scholar

    [116]

    Liu G B, Xiao D, Yao Y, Xu X, Yao W 2015 Chem. Soc. Rev. 44 2643Google Scholar

    [117]

    郑迪, 李杨, 陈文, 付统, 孙嘉伟, 张顺平, 徐红星 2019 中国科学: 物理学 力学 天文学 49 124205Google Scholar

    Zheng D, Li Y, Chen W, Fu T, Sun J, Zhang S, Xu H 2019 Sci Sin-Phys Mech Astron 49 124205Google Scholar

    [118]

    Chen W, Zhang S, Kang M, Liu W, Ou Z, Li Y, Zhang Y, Guan Z, Xu H 2018 Light: Sci. Appl. 7 56Google Scholar

    [119]

    Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar

    [120]

    Lin J, Li H, Zhang H, Chen W 2013 Appl. Phys. Lett. 102 203109Google Scholar

    [121]

    Fei R, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [122]

    Han X, Stewart H M, Shevlin S A, Catlow C R A, Guo Z X 2014 Nano Lett. 14 4607Google Scholar

    [123]

    Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J, Kim K S 2015 Science 349 723Google Scholar

    [124]

    Liu Z, Aydin K 2016 Nano Lett. 16 3457Google Scholar

    [125]

    Zhan T R, Zhao F Y, Hu X H, Liu X H, Zi J 2012 Phys. Rev. B 86 165416Google Scholar

    [126]

    Chern R L, Han D 2014 Opt. Express 22 4817Google Scholar

    [127]

    Chernozatonskii L A, Demin V A, Lambin P 2016 Phys. Chem. Chem. Phys. 18 27432Google Scholar

    [128]

    Jin D F, Christensen T, Soljačić M, Fang N X, Lu L, Zhang X 2017 Phys. Rev. Lett. 118 245301Google Scholar

    [129]

    Nikitin A Y, Guinea F, García-Vidal F J, Martín-Moreno L 2011 Phys. Rev. B 84 161407(R)Google Scholar

    [130]

    Silveiro I, Ortega J M P, Abajo F J G d 2015 New J. Phys. 17 083013Google Scholar

    [131]

    Zhao B, Zhang Z M 2015 ACS Photonics 2 1611Google Scholar

    [132]

    Jablan M, Soljacic M, Buljan H 2013 Proc. IEEE 101 1689Google Scholar

    [133]

    Zhao T, Hu M, Zhong R, Gong S, Zhang C, Liu S 2017 Appl. Phys. Lett. 110Google Scholar

    [134]

    Thongrattanasiri S, Koppens F H, Garcia de Abajo F J 2012 Phys. Rev. Lett. 108 047401Google Scholar

    [135]

    Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, García de Abajo F J, Nordlander P, Zhu X, Halas N J 2014 Nano Lett. 14 299Google Scholar

    [136]

    Lu H, Zeng C, Zhang Q, Liu X, Hossain M M, Reineck P, Gu M 2015 Sci. Rep. 5 8443Google Scholar

    [137]

    Wang B, Zhang X, Garcia-Vidal F J, Yuan X, Teng J 2012 Phys. Rev. Lett. 109 073901Google Scholar

    [138]

    Butet J, Brevet P F, Martin O J F 2015 ACS Nano 9 10545Google Scholar

    [139]

    Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar

    [140]

    Robert W B 2003 Nonlinear Optics (2nd Ed.) (New York: Elsevier) pp94–99

    [141]

    任梦昕, 许京军 2013 激光与光电子学进展 50 080002Google Scholar

    Ren M, Xu J 2013 Laser Optoelectron. Prog. 50 080002Google Scholar

    [142]

    Törmä P, Barnes W L 2014 Rep. Prog. Phys. 78 013901Google Scholar

    [143]

    Kravets V G, Kabashin A V, Barnes W L, Grigorenko A N 2018 Chem. Rev. 118 5912Google Scholar

    [144]

    Kamat P V, Hartland G V 2018 ACS Energy Lett. 3 1467Google Scholar

    [145]

    Boriskina S V, Ghasemi H, Chen G 2013 Mater. Today 16 375Google Scholar

    [146]

    Baranov D G, Wersäll M, Cuadra J, Antosiewicz T J, Shegai T 2018 ACS Photonics 5 24Google Scholar

  • 图 1  具有等离激元能带的结构示意图和扫描电子显微镜(scanning electron microscope, SEM)照片 (a), (b) 金属薄膜刻蚀周期性的孔洞[61]; (c), (d) 金属纳米颗粒周期性排列[62]; (e), (f) 金属表面覆盖介质光子晶体[63]; (g), (h) 金属表面覆盖自组装介质小球[64]

    Fig. 1.  Schematic views and SEM images of structures possessing plasmonic band structures: (a), (b) Metal films with periodic arrays of sub-wavelength holes[61]; (c), (d) periodic arrays of metal particles[62]; (e), (f) metallic substrate coated with dielectric photonic crystal[63]; (g), (h) metallic substrate coated with self-assembled dielectric spheres[64].

    图 2  (a) 表面等离极化激元、(b) 局域表面等离激元和(c) 人工表面等离激元[65]的场分布

    Fig. 2.  Field distributions of (a) SPP, (b) localized SPP and (c) spoof SPP[65].

    图 3  (a) 金属表面覆盖光子晶体的能带[63]; (b) 银光栅两侧覆盖介质层的透射光谱(左)和对应结构的介质层中的波导模式(实线)和银表面的SPP(虚线)的折叠能带(右)[67]

    Fig. 3.  (a) Plasmonic band structure of flat metallic substrates coated with two-dimensional dielectric photonic crystal layer[63]. (b) Left panel: transmission spectra of Ag grating coated symmetrically with dielectric layers; right panel: folded dispersion of guided (solid lines) and SPP (dashed lines) modes of Ag grating coated symmetrically with dielectric layers[67].

    图 4  金属纳米颗粒链的能带[69]

    Fig. 4.  Band structure of metal nanoparticle chain[69].

    图 5  光线以上能带的性质包括连续体中的束缚态、时间相干性和空间相干性[62,63]

    Fig. 5.  Properties of band which inside light cone including BIC, time and spatial coherence[62,63].

    图 6  连续体中的束缚态的拓扑解释[63]

    Fig. 6.  Topological nature of BICs[63].

    图 7  等离激元能带在光线以下的一些性质 (a) 导波[93]; (b) 全禁带[95]; (c) 狄拉克点[97,98]; (d) 负折射[96]; (e) 拓扑边界态[46]; (f) spoof SPP波导[99]

    Fig. 7.  Properties of plasmonic bands inside the light cone: (a) Wave guiding[93]; (b) complete band gap[95]; (c) Dirac point[97,98]; (d) negative refraction[96]; (e) topological edge state[46]; (f) spoof SPP waveguide[99].

    图 8  等离激元的一些应用 (a) 光学异常透射[104]; (b) 利用“牛眼”结构实现光的汇聚[105]; (c) 结构色[106]; (d) 红外光的完美吸收器[108]; (e) 以银颗粒阵列为基底的分布式激光器[110]; (f) 基于金属棒阵列的氢气浓度探测器[112]; (g) 基于混合光子与等离激元晶体的传感器[64]; (h) 基于混合光子与等离激元晶体的荧光相干辐射[113]; (i)利用金属颗粒增强拉曼光谱[114]

    Fig. 8.  Applications of plasmonics: (a) Extraordinary optical transmission[104]; (b) beaming light with a bull’s eye structure[105]; (c) structural colors[106]; (d) infrared perfect absorber[108]; (e) distributed feedback laser based on silver particle array[110]; (f) hydrogen sensor based on metallic photonic crystal slabs[112]; (g) sensor based on hybrid plasmonic-photonic crystal[64]; (h) coherent fluorescence emission by hybrid photonic-plasmonic crystals[113]; (i) enhance Raman spectroscopy by using metal nanoparticles[114].

    图 9  (a) 石墨烯等离激元色散[125]; (b) 石墨烯条的等离激元色散[129]; (c) 单层石墨烯周期性排布TM模式的能带[126]; (d) 石墨烯条周期性排布的能带[130]; (e) 石墨烯刻蚀六角晶格孔洞的能带[128]; (f) 石墨烯覆盖在一维介质光栅上的能带[125]

    Fig. 9.  (a) Dispersion of graphene-based plasmons[125]; (b) dispersion of graphene ribbon based plasmons[129]; (c) TM band structure for monolayer graphene sheet array[126]; (d) band structure for graphene ribbon array[130]; (e) band structure for graphene-based plasmonic crystal[128]; (f) band structure for one-dimensional dielectric grating coated with monolayer grapheme sheet[125].

    图 10  石墨烯的一些应用 (a) 基于石墨烯SPP的太赫兹切伦科夫辐射[133]; (b) 基于周期性摆放的石墨烯圆盘的宽角度的全吸收[134]; (c) 在槽深逐渐变化的介质光栅上覆盖石墨烯, 实现光在特定位置的束缚与释放[136]; (d) 利用周期性摆放的石墨烯实现对光的分束与定向辐射[137]

    Fig. 10.  Applications of graphene-based plasmonic: (a) Cherenkov terahertz radiation viagraphene plasmons[133]; (b) complete absorption by periodic array of graphene nanodisks[134]; (c) slow and release light based on graphene plasmons[136]; (d) beam splitting and direction control of light based on monolayer graphene sheet array[137].

  • [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [2]

    Ruan Z, Qiu M 2006 Phys. Rev. Lett. 96 233901Google Scholar

    [3]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [4]

    Tittl A, Giessen H, Liu N 2014 Nanophotonics 3 3Google Scholar

    [5]

    Tong L W, Wei Hong, Zhang S P, Xu H X 2014 Sensors 14 7959Google Scholar

    [6]

    Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou Z K, Wang X, Jin C, Wang J 2013 Nat. Commun. 4 2381Google Scholar

    [7]

    Yang W H, Zhang C, Sun S, Jing J, Song Q, Xiao S 2017 Nanoscale 9 8907Google Scholar

    [8]

    Dorfmüller J, Vogelgesang R, Khunsin W, Rockstuhl C, Etrich C, Kern K 2010 Nano Lett. 10 3596Google Scholar

    [9]

    Chen X W, Agio M, Sandoghdar V 2012 Phys. Rev. Lett. 108 233001Google Scholar

    [10]

    Liu W, Miroshnichenko A E, Neshev D N, Kivshar Y S 2012 ACS Nano 6 5489Google Scholar

    [11]

    Alonso-González P, Albella P, Neubrech F, Huck C, Chen J, Golmar F, Casanova F, Hueso L E, Pucci A, Aizpurua J, Hillenbrand R 2013 Phys. Rev. Lett. 110 203902Google Scholar

    [12]

    He X, Tang J, Hu H, Shi J, Guan Z, Zhang S, Xu H 2019 ACS Nano 13 14041Google Scholar

    [13]

    Zhang X, Liu Z 2008 Nat. Mater. 7 435Google Scholar

    [14]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [15]

    Nie S M, Emery S R 1997 Science 275 1102Google Scholar

    [16]

    Zhang W, C ui, Yeo BS , Schmid T, Hafner C, Zenobi R 2007 Nano Lett. 7 1401Google Scholar

    [17]

    Wang X, Zhu X, Chen Y, Zheng M, Xiang Q, Tang Z, Zhang G, Duan H 2017 ACS Appl. Mater. Interfaces 9 31102Google Scholar

    [18]

    Yang X, Sun Z, Low T, Hu H, Guo X, García de Abajo F J, Avouris P, Dai Q 2018 Adv. Mater. 30 1704896Google Scholar

    [19]

    Ma R M, Oulton R F, Sorger V J, Zhang X 2013 Laser Photonics Rev. 7 1Google Scholar

    [20]

    Zhang H, Tang D Y, Zhao L M, Bao Q L, Loh K P, Lin B, Tjin S C 2010 Laser Phys. Lett. 7 591Google Scholar

    [21]

    Bai B, Svirko Y, Turunen J, Vallius T 2007 Phys. Rev. A 76 023811Google Scholar

    [22]

    Yu P, Li J, Tang C, Cheng H, Liu Z, Li Z, Liu Z, Gu C, Li J, Chen S, Tian J 2016 Light: Sci. Appl. 5 e16096Google Scholar

    [23]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photonics Rev. 9 713Google Scholar

    [24]

    李雄, 马晓亮, 罗先刚 2017 光电工程 44 255Google Scholar

    Li X, Ma X, Luo X 2017 Opto-Electron. Eng. 44 255Google Scholar

    [25]

    Li G, Sartorello G, Chen S, Nicholls L H, Li K F, Zentgraf T, Zhang S, Zayats A V 2018 Laser Photonics Rev. 12 1800034Google Scholar

    [26]

    Fan R, Xiong B, Peng R W, Wang M 2019 Adv. Mater. 32 1904646Google Scholar

    [27]

    He Y, Wen Z, Chen L, Li Y, Ning Y, Chen G 2014 IEEE Photonics Technol. Lett. 26 1801Google Scholar

    [28]

    Akahane Y, Asano T, Song B S, Noda S 2003 Nature 425 944Google Scholar

    [29]

    Song B S, Noda S, Asano T, Akahane Y 2005 Nat. Mater. 4 207Google Scholar

    [30]

    McNab S J, Moll N, Vlasov Y A 2003 Opt. Express 11 2927Google Scholar

    [31]

    Faolain L O, Yuan X, Mcintyre D, Thoms S, Chong H, Rue R M D L, Krauss T F 2006 Electron. Lett. 42 1454Google Scholar

    [32]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77Google Scholar

    [33]

    Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S 1998 Phys. Rev. B 58 R10096Google Scholar

    [34]

    Wonjoo S, Zheng W, Shanhui F 2004 IEEE J. Quantum Electron. 40 1511Google Scholar

    [35]

    Imada M, Noda S, Chutinan A, Tokuda T, Murata M, Sasaki G 1999 Appl. Phys. Lett. 75 316Google Scholar

    [36]

    Zheng W, Ren G, Xing M, Chen W, Liu A, Zhou W, Baba T, Nozaki K, Chen L 2008 Appl. Phys. Lett. 93 081109Google Scholar

    [37]

    Huang X, Lai Y, Hang Z H, Zheng H, Chan C T 2011 Nat. Mater. 10 582Google Scholar

    [38]

    Yao Z, Luo J, Lai Y 2016 Opt. Lett. 41 5106Google Scholar

    [39]

    Hea C, Sun X, Liu X, Lu M, Chen Y, Feng L, Chen Y 2016 Proc. Natl. Acad. Sci. U.S.A. 113 4924Google Scholar

    [40]

    Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y, Scherer A 2011 Science 333 729Google Scholar

    [41]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772Google Scholar

    [42]

    Wang H, Zhang X 2011 Phys. Rev. A 83 053820Google Scholar

    [43]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photonics 8 821Google Scholar

    [44]

    Song D, Paltoglou V, Liu S, Zhu Y, Gallardo D, Tang L, Xu J, Ablowitz M, Efremidis N K, Chen Z 2015 Nat. Commun. 6 6272Google Scholar

    [45]

    Deng H, Chen X, Panoiu N C, Ye F 2016 Opt. Lett. 41 4281Google Scholar

    [46]

    Wu X, Meng Y, Tian J, Huang Y, Xiang H, Han D, Wen W 2017 Nat. Commun. 8 1304Google Scholar

    [47]

    Chen X D, Zhao F L, Chen M, Dong J W 2017 Phys. Rev. B 96 020202Google Scholar

    [48]

    Wu Y, Hu X, Gong Q 2018 Phys. Rev. Mater. 2 122201Google Scholar

    [49]

    Peng L, Chen Y, Yang Y, Wang Z, Yu F, Wang G, Shen N H, Zhang B, Soukoulis C M, Chen H 2018 Laser Photonics Rev. 12 1800002Google Scholar

    [50]

    Yang Y, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2018 Phys. Rev. Lett. 120 217401Google Scholar

    [51]

    Hu C, Li Z, Tong R, Wu X, Xia Z, Wang L, Li S, Huang Y, Wang S, Hou B, Chan C T, Wen W 2018 Phys. Rev. Lett. 121 024301Google Scholar

    [52]

    Xie B, Su G, Wang H, Su H, Shen X, Zhan P, Lu M, Wang Z, Chen Y 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [53]

    Song W, Sun W, Chen C, Song Q, Xiao S, Zhu S, Li T 2019 Phys. Rev. Lett. 123 165701Google Scholar

    [54]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2008 Phys. Rev. Lett. 100 013905Google Scholar

    [55]

    Yu Z, Veronis G, Wang Z, Fan S 2008 Phys. Rev. Lett. 100 023902Google Scholar

    [56]

    Lu L, Gao H, Wang Z 2018 Nat. Commun. 9 5384Google Scholar

    [57]

    Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F, Liu Z 2016 Nat. Phys. 13 369Google Scholar

    [58]

    Hu X, Chan C T, Ho K, Zi J 2011 Phys. Rev. Lett. 106 174501Google Scholar

    [59]

    Bi Y, Feng J, Li Y, Zhang X, Liu Y, Jin Y, Sun H 2013 Adv. Mater. 25 6969Google Scholar

    [60]

    Wang Y, Liu H, Zhu J 2019 APL Mater. 7 080906Google Scholar

    [61]

    Najiminaini M, Vasefi F, Kaminska B, Carson J J L 2011 Opt. Express 19 26186Google Scholar

    [62]

    Shi L, Hakala T K, Rekola H T, Martikainen J P, Moerland R J, Torma P 2014 Phys. Rev. Lett. 112 153002Google Scholar

    [63]

    Zhang Y W, Chen A, Liu W Z, Hsu C W, Wang B, Guan F, Liu X H, Shi L, Lu L, Zi J 2018 Phys. Rev. Lett. 120 186103Google Scholar

    [64]

    Yu X D, Shi L, Han D Z, Zi J, Braun P V 2010 Adv. Funct. Mater. 20 1910Google Scholar

    [65]

    Erementchouk M, Joy S R, Mazumder P 2016 Proc. R. Soc. A 472 20160616Google Scholar

    [66]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [67]

    Wu F, Han D, Li X, Liu X, Zi J 2008 Opt. Express 16 6619Google Scholar

    [68]

    Fung K H, Chan C T 2007 Opt. Lett. 32 973Google Scholar

    [69]

    Lai Y, Han D Z, Fung K H, Zhang Z Q, Chan C T Quadrupole Bands and Dirac-Point-like Dispersions in Metal Nanoparticle Chains (Hong Kong: Hong Kong University of Science and Technology) Unpublished

    [70]

    Han D, Lai Y, Fung K, Zhang Z, Chan C T 2009 Phys. Rev. B 79 195444Google Scholar

    [71]

    Liu J, Ding L, Zhao C, Liang C, Xiao Y, Zhang J, Xu W 2019 IEEE Photonics J. 11 1Google Scholar

    [72]

    Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Phys. 1 16048Google Scholar

    [73]

    Marinica D C, Borisov A G, Shabanov S V 2008 Phys. Rev. Lett. 100 183902Google Scholar

    [74]

    Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljačić M 2013 Nature 499 188Google Scholar

    [75]

    Yang Y, Peng C, Liang Y, Li Z, Noda S 2014 Phys. Rev. Lett. 113 037401Google Scholar

    [76]

    Dai S, Liu L, Han D, Zi J 2018 Phys. Rev. B 98 081405(R)Google Scholar

    [77]

    Cumpsty N A, Whitehead D S 1971 J. Sound Vib. 18 353Google Scholar

    [78]

    Xiao Y X, Ma G, Zhang Z Q, Chan C T 2017 Phys. Rev. Lett. 118 166803Google Scholar

    [79]

    Porter R, Evans D V 2005 Wave Motion 43 29Google Scholar

    [80]

    Hirose K, Liang Y, Kurosaka Y, Watanabe A, Sugiyama T, Noda S 2014 Nat. Photonics 8 406Google Scholar

    [81]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017 Nature 541 196Google Scholar

    [82]

    Yanik A A, Cetin A E, Huang M, Artar A, Mousavi S H, Khanikaev A, Connor J H, Shvets G, Altug H 2011 Proc. Natl. Acad. Sci. U. S. A. 108 11784Google Scholar

    [83]

    Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [84]

    Liu Z, Xu Y, Lin Y, Xiang J, Feng T, Cao Q, Li J, Lan S, Liu J 2019 Phys. Rev. Lett. 123 253901Google Scholar

    [85]

    He Y, Guo G, Feng T, Xu Y, Miroshnichenko A E 2018 Phys. Rev. B 98 161112Google Scholar

    [86]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231Google Scholar

    [87]

    Gao X, Hsu C W, Zhen B, Lin X, Joannopoulos J D, Soljacic M, Chen H 2016 Sci. Rep. 6 31908Google Scholar

    [88]

    Bulgakov E N, Maksimov D N 2017 Phys. Rev. Lett. 118 267401Google Scholar

    [89]

    Zhen B, Hsu C W, Lu L, Stone A D, Soljacic M 2014 Phys. Rev. Lett. 113 257401Google Scholar

    [90]

    Doeleman H M, Monticone F, den Hollander W, Alu A, Koenderink A F 2018 Nat. Photonics 12 397Google Scholar

    [91]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331Google Scholar

    [92]

    Brongersma M L, Hartman J W, Atwater H A 2000 Phys. Rev. B 62 R16356Google Scholar

    [93]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A 2003 Nat. Mater. 2 229Google Scholar

    [94]

    Li K, Stockman M I, Bergman D J 2003 Phys. Rev. Lett. 91 227402Google Scholar

    [95]

    Wu F, Han D, Hu X, Liu X, Zi J 2009 Journal of Physics: Condensed Matter 21 185010Google Scholar

    [96]

    Burgos S P, de Waele R, Polman A, Atwater H A 2010 Nat. Mater. 9 407Google Scholar

    [97]

    Han D, Lai Y, Zi J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 123904Google Scholar

    [98]

    Weick G, Woollacott C, Barnes W L, Hess O, Mariani E 2013 Phys. Rev. Lett. 110 106801Google Scholar

    [99]

    Shen X P, Cui T J, Martin-Cano D, Garcia-Vidal F J 2013 Proc. Natl. Acad. Sci. U.S.A. 110 40Google Scholar

    [100]

    Xiang H, Meng Y, Zhang Q, Qin F F, Xiao J J, Han D, Wen W 2015 Opt. Commun. 356 59Google Scholar

    [101]

    Liu L, Yang C, Yang J, Xiang H, Han D 2017 J. Opt. Soc. Am. B 34 1130Google Scholar

    [102]

    Shen X, Cui T J 2013 Appl. Phys. Lett. 102 211909Google Scholar

    [103]

    Gao X, Zhou L, Yu X Y, Cao W P, Li H O, Ma H F, Cui T J 2015 Opt. Express 23 23270Google Scholar

    [104]

    Bravo-Abad J, Degiron A, Przybilla F, Genet C, García-Vidal F J, Martín-Moreno L, Ebbesen T W 2006 Nat. Phys. 2 120Google Scholar

    [105]

    Yi J M, Cuche A, Devaux E, Genet C, Ebbesen T W 2014 ACS Photonics 1 365Google Scholar

    [106]

    Zhu X, Vannahme C, Højlund-Nielsen E, Mortensen N A, Kristensen A 2016 Nat. Nanotechnol. 11 325Google Scholar

    [107]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [108]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

    [109]

    Li G, Chen X, Li O, Shao C, Jiang Y, Huang L, Ni B, Hu W, Lu W 2012 J. Phys. D: Appl. Phys. 45 205102Google Scholar

    [110]

    Schokker A H, Koenderink A F 2014 Phys. Rev. B 90 155452Google Scholar

    [111]

    Stehr J, Crewett J, Schindler F, Sperling R, von Plessen G, Lemmer U, Lupton J M, Klar T A, Feldmann J, Holleitner A W, Forster M, Scherf U 2003 Adv. Mater. 15 1726Google Scholar

    [112]

    Nau D, Seidel A, Orzekowsky R B, Lee S H, Deb S, Giessen H 2010 Opt. Lett. 35 3150Google Scholar

    [113]

    Shi L, Yuan X, Zhang Y, Hakala T, Yin S, Han D, Zhu X, Zhang B, Liu X, Torma P, Lu W, Zi J 2014 Laser Photonics Rev. 8 717Google Scholar

    [114]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392Google Scholar

    [115]

    Luo X, Qiu T, Lu W, Ni Z 2013 Mater. Sci. Eng., R 74 351Google Scholar

    [116]

    Liu G B, Xiao D, Yao Y, Xu X, Yao W 2015 Chem. Soc. Rev. 44 2643Google Scholar

    [117]

    郑迪, 李杨, 陈文, 付统, 孙嘉伟, 张顺平, 徐红星 2019 中国科学: 物理学 力学 天文学 49 124205Google Scholar

    Zheng D, Li Y, Chen W, Fu T, Sun J, Zhang S, Xu H 2019 Sci Sin-Phys Mech Astron 49 124205Google Scholar

    [118]

    Chen W, Zhang S, Kang M, Liu W, Ou Z, Li Y, Zhang Y, Guan Z, Xu H 2018 Light: Sci. Appl. 7 56Google Scholar

    [119]

    Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar

    [120]

    Lin J, Li H, Zhang H, Chen W 2013 Appl. Phys. Lett. 102 203109Google Scholar

    [121]

    Fei R, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [122]

    Han X, Stewart H M, Shevlin S A, Catlow C R A, Guo Z X 2014 Nano Lett. 14 4607Google Scholar

    [123]

    Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J, Kim K S 2015 Science 349 723Google Scholar

    [124]

    Liu Z, Aydin K 2016 Nano Lett. 16 3457Google Scholar

    [125]

    Zhan T R, Zhao F Y, Hu X H, Liu X H, Zi J 2012 Phys. Rev. B 86 165416Google Scholar

    [126]

    Chern R L, Han D 2014 Opt. Express 22 4817Google Scholar

    [127]

    Chernozatonskii L A, Demin V A, Lambin P 2016 Phys. Chem. Chem. Phys. 18 27432Google Scholar

    [128]

    Jin D F, Christensen T, Soljačić M, Fang N X, Lu L, Zhang X 2017 Phys. Rev. Lett. 118 245301Google Scholar

    [129]

    Nikitin A Y, Guinea F, García-Vidal F J, Martín-Moreno L 2011 Phys. Rev. B 84 161407(R)Google Scholar

    [130]

    Silveiro I, Ortega J M P, Abajo F J G d 2015 New J. Phys. 17 083013Google Scholar

    [131]

    Zhao B, Zhang Z M 2015 ACS Photonics 2 1611Google Scholar

    [132]

    Jablan M, Soljacic M, Buljan H 2013 Proc. IEEE 101 1689Google Scholar

    [133]

    Zhao T, Hu M, Zhong R, Gong S, Zhang C, Liu S 2017 Appl. Phys. Lett. 110Google Scholar

    [134]

    Thongrattanasiri S, Koppens F H, Garcia de Abajo F J 2012 Phys. Rev. Lett. 108 047401Google Scholar

    [135]

    Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, García de Abajo F J, Nordlander P, Zhu X, Halas N J 2014 Nano Lett. 14 299Google Scholar

    [136]

    Lu H, Zeng C, Zhang Q, Liu X, Hossain M M, Reineck P, Gu M 2015 Sci. Rep. 5 8443Google Scholar

    [137]

    Wang B, Zhang X, Garcia-Vidal F J, Yuan X, Teng J 2012 Phys. Rev. Lett. 109 073901Google Scholar

    [138]

    Butet J, Brevet P F, Martin O J F 2015 ACS Nano 9 10545Google Scholar

    [139]

    Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar

    [140]

    Robert W B 2003 Nonlinear Optics (2nd Ed.) (New York: Elsevier) pp94–99

    [141]

    任梦昕, 许京军 2013 激光与光电子学进展 50 080002Google Scholar

    Ren M, Xu J 2013 Laser Optoelectron. Prog. 50 080002Google Scholar

    [142]

    Törmä P, Barnes W L 2014 Rep. Prog. Phys. 78 013901Google Scholar

    [143]

    Kravets V G, Kabashin A V, Barnes W L, Grigorenko A N 2018 Chem. Rev. 118 5912Google Scholar

    [144]

    Kamat P V, Hartland G V 2018 ACS Energy Lett. 3 1467Google Scholar

    [145]

    Boriskina S V, Ghasemi H, Chen G 2013 Mater. Today 16 375Google Scholar

    [146]

    Baranov D G, Wersäll M, Cuadra J, Antosiewicz T J, Shegai T 2018 ACS Photonics 5 24Google Scholar

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用. 物理学报, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [3] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 物理学报, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [4] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [5] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [6] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [7] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [8] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [9] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射. 物理学报, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [10] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [11] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [12] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [13] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [14] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [15] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [16] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [18] 陈健, 李小丽, 李海华, 王庆康. 基于正方和六角排列结构光子晶体对发光二极管出光效率的研究. 物理学报, 2009, 58(9): 6216-6221. doi: 10.7498/aps.58.6216
    [19] 王同标, 刘念华. 正负折射率材料组成的一维光子晶体的能带及电场. 物理学报, 2007, 56(10): 5878-5882. doi: 10.7498/aps.56.5878
    [20] 柴永泉, 靳常青, 刘邦贵. 类MgB2硼化物晶体电子结构比较研究. 物理学报, 2003, 52(11): 2883-2889. doi: 10.7498/aps.52.2883
计量
  • 文章访问数:  11262
  • PDF下载量:  685
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-08
  • 修回日期:  2020-03-22
  • 上网日期:  2020-05-12
  • 刊出日期:  2020-08-05

/

返回文章
返回