搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纳米金属-石墨烯耦合的多频段等离激元诱导透明

胡宝晶 黄铭 黎鹏 杨晶晶

引用本文:
Citation:

基于纳米金属-石墨烯耦合的多频段等离激元诱导透明

胡宝晶, 黄铭, 黎鹏, 杨晶晶

Multiband plasmon-induced transparency based on nanometals-graphene hybrid model

Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing
PDF
HTML
导出引用
  • 提出了基于银纳米棒、银纳米盘和石墨烯耦合的多频段等离激元诱导透明(PIT)电磁模型, 通过时域有限差分和辐射双振荡器(RTO)模型从数值计算和理论研究两方面分析了模型的电磁特性. 结果表明: 由于银纳米棒与银纳米盘、银纳米棒与银纳米棒之间的明模-明模耦合, 可以实现在单频段PIT效应的基础之上, 进一步产生双频段和三频段的PIT效应. 其次, 通过改变石墨烯的化学电位势, 可以在单频段、双频段和三频段PIT模型中同时实现谐振频率和透射振幅的可调性. 当化学势增大时, 各频段PIT窗口的谐振频率将会逐渐增大, 发生蓝移. 此外, 随着化学势增加, 银盘和银棒表面电荷数会不断增加、表面电场将不断增强. 同时, 银盘和银棒、银棒和银棒之间的耦合强度也将逐渐增强. 因此, 各频段PIT的透射振幅将会逐渐减小, 振幅调制深度逐渐增大. 进一步研究了单频段PIT模型的传感特性, 该模型随背景材料折射率变化的灵敏度达到了3906.6 nm/RIU. 这为多频带滤波、超灵敏传感器的设计提供了理论参考.
    In this paper, we have proposed a multiband plasmon-induced transparency (PIT) hybrid model based on silver nanorods, silver nanodisk and graphene. The electromagnetic properties are numerically and theoretically studied in this paper. The research results show that using the bright-bright mode coupling between silver nanorods and silver nanodisk, based on the weak hybridization effect induced by the detuning of each bright mode unit, the single-band, dual-band and triple-band PIT effects can be achieved. By changing the chemical potential of graphene, the tunability of the resonant frequencies and transmission amplitude can be achieved simultaneously in each PIT model. When the chemical potential of graphene is 0 in each of the three PIT models, that is, without graphene, the resonant frequencies of its transparent window is the smallest. As the chemical potential of graphene increases from 0 to 0.5 eV, the resonant notches of the transparent peak in all three PIT models are both enhanced and blue shifted. Especially, when the chemical potential is 0.5 eV, the absolute increment of resonance notch generated by the sing-band PIT transparent window is $\Delta f = 1.01$ THz and the relative increment is 2.91% while the largest absolute increment of resonance notch generated by the dual-band PIT transparent window is $\Delta f = 1.77$ THz and the largest relative increment is 5.97%. In the next place, when the chemical potential is 0.3 eV, the absolute increment of resonance notch generated by the triple-band PIT transparent window is $\Delta f = 1.26$ THz and the relative increment of the window is 4.02%. On the other hand, when graphene is existent in none of the three models, the resonance between silver nanodisk and silver nanorods, and the resonance between silver nanorods and silver nanorods are the weakest and the transmission amplitude of transparent window is the strongest in each of the three PIT models. Thereafter, with the increase of chemical potential, the number of surface charges on the silver nanodisk and silver nanorods increases and the intensity of electric field is enhanced. At the same time, the coupling strength between silver nanodisk and silver nanorods, and the coupling strength between silver nanorods and silver nanorods are also gradually enhanced. As a result, the transmission amplitude of each PIT model will gradually decrease. Especially, when the chemical potential is 0.5 eV, the amplitude modulation depth of the single-band PIT transparent peak is 20.2% and the amplitude modulation depth of the two transparent windows in dual-band PIT model are 31.2% and 24.2% respectively. In addition, when the chemical potential is 0.3 eV, the amplitude modulation depths of the three transparent windows in triple-band PIT model are 29.8%, 33.8%, and 20.5%. Finally, the sensing properties of the single-band PIT model are further investigated. The results show that the sensitivities of the model with refractive index of different background materials reach 3906.6 nm/RIU all, which provides a theoretical reference for the design of multiband filtering and ultrasensitive sensors.
      通信作者: 黄铭, huangming@ynu.edu.cn
      Corresponding author: Huang Ming, huangming@ynu.edu.cn
    [1]

    Tassin P, Zhang L, Koschny T 2009 Phys. Rev. Lett. 102 4

    [2]

    Li H J, Wang L L, Liu J Q 2013 Appl. Phys. Lett. 103 211104Google Scholar

    [3]

    Liu N, Langguth L, Weiss T 2009 Nat. Mater. 8 9Google Scholar

    [4]

    Papasimakis N, Fu Y H, Fedotov V A 2009 Appl. Phys. Lett. 94 211902Google Scholar

    [5]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [6]

    Qin M, Wang L L, Zhai X 2018 IEEE Photonic. Tech. L. 30 11Google Scholar

    [7]

    Ding J, Arigong B, Ren H 2014 Sci. Rep. 4 1

    [8]

    Xiao S Y, Wang T, Liu T T 2018 Carbon 126 271Google Scholar

    [9]

    Shi C Y, He X Y, Peng J 2019 Opt. Laser Technol. 114 28Google Scholar

    [10]

    Ma Q C, Zhan Y W, Hong W Y 2018 Nanomaterials 9 7Google Scholar

    [11]

    Wei B Z, Jian S S 2018 Plasmonics 13 6

    [12]

    Liu T T, Zhou C B, Cheng L 2019 J. Opt. 21 3

    [13]

    Sun C, Dong Z W, Si J N 2017 Opt. Express 25 1242Google Scholar

    [14]

    Dong Z W, Sun C, Si J N 2017 Opt. Express 25 12251Google Scholar

    [15]

    王越, 冷雁冰, 王丽 2018 物理学报 67 097801Google Scholar

    Wang Y, Leng Y B, Wang L 2018 Acta Phys. Sin. 67 097801Google Scholar

    [16]

    Lao C D, Liang Y Y, Wang X J 2019 Nanomaterials 9 171Google Scholar

    [17]

    Wang X J, Meng H Y, Deng S Y 2019 Nanomaterials 9 385Google Scholar

    [18]

    Zhang X B, Wang G Q, Zhang L 2019 Crystals 9 146Google Scholar

    [19]

    Cen H F, Wang F Q, Liang R S 2018 Opt. Commun. 420 78Google Scholar

    [20]

    Hu X G, Yuan S, Armghan A 2017 J. Phys. D: Appl. Phys. 50 025301Google Scholar

    [21]

    Zhang S, Genov D A, Wang Y 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [22]

    Berardi S Z, Rusen Y M, Kelly M 2012 Nat. Commun. 3 780Google Scholar

    [23]

    Habib M, Rashed A R, Ozbay E 2018 Opt. Mater. Express 8 1069Google Scholar

    [24]

    Shu C, Chen Q, Mei J 2019 Mater. Res. Express 6 055808Google Scholar

    [25]

    Zhang Z J, Yang J B, He X 2018 RSC Adv. 8 27746Google Scholar

    [26]

    Liu Y, Zhong R B, Lian Z 2018 Sci. Rep. 8 2828Google Scholar

  • 图 1  单频段PIT模型结构图 (a) 三维空间结构图; (b) 二维平面结构图

    Fig. 1.  Schematic diagrams of single-band PIT model: (a) Three-dimensional space schematic; (b) two-dimensional plane schematic.

    图 2  单银盘谐振器、单银棒谐振器、单频段PIT模型的透射曲线

    Fig. 2.  Transmission spectra of the sole disks array, the sole rods array, and the single-band PIT model.

    图 3  单频段PIT模型在 (a) dip A, (b) dip B和(c) peak的电场分布

    Fig. 3.  Distributions of electric field of single-band PIT model at (a) dip A, (b) dip B, and (c) peak.

    图 4  单频段PIT模型改变石墨烯化学势时, 谐振频率和透射振幅随频率的变化情况

    Fig. 4.  Variations of resonant frequency and amplitude in transmission with frequency under different chemical potential of graphene in single-band PIT model.

    图 5  化学势为0和0.3 eV时, FDTD仿真结果与RTO拟合结果比较

    Fig. 5.  Comparisons of the PIT calculated by FDTD method and fitted by RTO model when chemical potential is 0 and 0.3 eV.

    图 6  化学势为0.1 和0.5 eV时, FDTD仿真结果与RTO拟合结果比较

    Fig. 6.  Comparison of the PIT calculated by FDTD method and fitted by RTO model when chemical potential is 0.1 and 0.5 eV.

    图 7  (a) 当化学势由0 变化到0.5 eV时, RTO模型中各拟合参数随化学势的变化关系; (b) 引入修正因子后新的拟合结果

    Fig. 7.  (a) The fitting values of parameters in RTO model with the chemical potential of graphene varying from 0 to 0.5 eV; (b) new fitting result after introducing correction factor.

    图 8  单频段PIT模型不同背景材料下的透射窗对比

    Fig. 8.  Variations of transmission windows with different background materials in single-band PIT model.

    图 9  单频段PIT模型 dip A, dip B和peak随背景材料折射率的变化规律

    Fig. 9.  Variations of dip A, dip B, and peak with the different background materials in single-band PIT model.

    图 10  双频段PIT模型二维平面图

    Fig. 10.  Two-dimensional plane schematic of dual-band PIT model.

    图 11  双频段PIT模型的透射曲线

    Fig. 11.  Transmission spectra of dual-band PIT model.

    图 12  双频段PIT模型在 (a) dip A, (b) dip B, (c) dip C, (d) peak I和(e) peak II的电场分布

    Fig. 12.  Distributions of electric field of dual-band PIT model at (a) dip A, (b) dip B, (c) dip C, (d) peak I and (e) peak II.

    图 13  双频段PIT模型改变石墨烯化学势时, 谐振频率和透射振幅随频率的变化情况

    Fig. 13.  Variations of resonant frequency and amplitude in transmission with frequency under different chemical potential of graphene in dual-band PIT model.

    图 14  三频段PIT模型二维平面图

    Fig. 14.  Two-dimensional plane schematic diagram of triple-band PIT model.

    图 15  三频段PIT模型的透射曲线

    Fig. 15.  Transmission spectra of triple-band PIT model.

    图 16  三频段PIT模型在 (a) dip A, (b) dip B, (c) dip C, (d) dip D, (e) peak I, (f) peak II和(g) peak III 的电场分布

    Fig. 16.  Distribution of electric field of triple-band PIT model at (a) dip A, (b) dip B, (c) dip C, (d) dip D, (e) peak I, (f) peak II and (g) peak III.

    图 17  三频段PIT模型改变石墨烯化学势时, 谐振频率和透射振幅随频率的变化情况

    Fig. 17.  Variations of resonant frequency and amplitude in transmission with frequency under different chemical potential of graphene in triple-band PIT model.

  • [1]

    Tassin P, Zhang L, Koschny T 2009 Phys. Rev. Lett. 102 4

    [2]

    Li H J, Wang L L, Liu J Q 2013 Appl. Phys. Lett. 103 211104Google Scholar

    [3]

    Liu N, Langguth L, Weiss T 2009 Nat. Mater. 8 9Google Scholar

    [4]

    Papasimakis N, Fu Y H, Fedotov V A 2009 Appl. Phys. Lett. 94 211902Google Scholar

    [5]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [6]

    Qin M, Wang L L, Zhai X 2018 IEEE Photonic. Tech. L. 30 11Google Scholar

    [7]

    Ding J, Arigong B, Ren H 2014 Sci. Rep. 4 1

    [8]

    Xiao S Y, Wang T, Liu T T 2018 Carbon 126 271Google Scholar

    [9]

    Shi C Y, He X Y, Peng J 2019 Opt. Laser Technol. 114 28Google Scholar

    [10]

    Ma Q C, Zhan Y W, Hong W Y 2018 Nanomaterials 9 7Google Scholar

    [11]

    Wei B Z, Jian S S 2018 Plasmonics 13 6

    [12]

    Liu T T, Zhou C B, Cheng L 2019 J. Opt. 21 3

    [13]

    Sun C, Dong Z W, Si J N 2017 Opt. Express 25 1242Google Scholar

    [14]

    Dong Z W, Sun C, Si J N 2017 Opt. Express 25 12251Google Scholar

    [15]

    王越, 冷雁冰, 王丽 2018 物理学报 67 097801Google Scholar

    Wang Y, Leng Y B, Wang L 2018 Acta Phys. Sin. 67 097801Google Scholar

    [16]

    Lao C D, Liang Y Y, Wang X J 2019 Nanomaterials 9 171Google Scholar

    [17]

    Wang X J, Meng H Y, Deng S Y 2019 Nanomaterials 9 385Google Scholar

    [18]

    Zhang X B, Wang G Q, Zhang L 2019 Crystals 9 146Google Scholar

    [19]

    Cen H F, Wang F Q, Liang R S 2018 Opt. Commun. 420 78Google Scholar

    [20]

    Hu X G, Yuan S, Armghan A 2017 J. Phys. D: Appl. Phys. 50 025301Google Scholar

    [21]

    Zhang S, Genov D A, Wang Y 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [22]

    Berardi S Z, Rusen Y M, Kelly M 2012 Nat. Commun. 3 780Google Scholar

    [23]

    Habib M, Rashed A R, Ozbay E 2018 Opt. Mater. Express 8 1069Google Scholar

    [24]

    Shu C, Chen Q, Mei J 2019 Mater. Res. Express 6 055808Google Scholar

    [25]

    Zhang Z J, Yang J B, He X 2018 RSC Adv. 8 27746Google Scholar

    [26]

    Liu Y, Zhong R B, Lian Z 2018 Sci. Rep. 8 2828Google Scholar

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240489
    [2] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [3] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [4] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211397
    [5] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 物理学报, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [6] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [7] 胡宝晶, 黄铭, 黎鹏, 杨成福. 基于纳米盘棒耦合的多频段等离激元诱导透明研究. 物理学报, 2020, 69(13): 134202. doi: 10.7498/aps.69.20200093
    [8] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [9] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [10] 郭伟玲, 邓杰, 王嘉露, 王乐, 邰建鹏. 具有石墨烯/铟锑氧化物复合透明电极的GaN发光二极管. 物理学报, 2019, 68(24): 247303. doi: 10.7498/aps.68.20190983
    [11] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [12] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [13] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [14] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [15] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [16] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [17] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [18] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [19] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [20] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
计量
  • 文章访问数:  5260
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-10
  • 修回日期:  2020-05-18
  • 上网日期:  2020-06-05
  • 刊出日期:  2020-09-05

/

返回文章
返回