搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可调谐的声学型石墨烯等离激元增强纳米红外光谱

段谕 戴小康 吴晨晨 杨晓霞

引用本文:
Citation:

可调谐的声学型石墨烯等离激元增强纳米红外光谱

段谕, 戴小康, 吴晨晨, 杨晓霞

Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy

Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia
PDF
导出引用
  • 纳米红外光谱 (nano-infrared spectroscopy, 简记为nano-IR) 技术能够突破光的衍射极限,实现 ~ 10 nm空间分辨率的红外光谱检测,是研究纳米尺度物质化学成分和结构的重要技术手段. 然而,由于纳米物质的尺寸与红外光的波长存在较大失配,导致其红外吸收信号微弱. 在这里,我们理论提出了一种基于纳米腔室的声学型石墨烯等离激元 (nanocavity-Acoustic graphene plasmon, 简记为n-AGP) 可调谐增强nano-IR检测平台. 该平台可实现超高光场压缩 (模式体积Vn-AGP ≈ 10-7λ03λ0 = 6.25 μm) 和约50倍电场增强的n-AGP激发. 通过调控金纳米腔室结构和石墨烯费米能级,我们实现了n-AGP的宽频段动态调控 (1290-2124 cm-1). 此外,由于n-AGP的电磁场高度局域在纳米腔室内,具有高的探测灵敏度,可实现单个蛋白质颗粒酰胺I带和酰胺II带振动指纹特征的探测 (灵敏度提高15倍). 这一基于n-AGP的增强结构拓展了nano-IR技术在单分子尺度的表征能力,可广泛应用于生物、催化等领域.
    Nano-infrared spectroscopy (nano-IR) technology can surpass the diffraction limit of light, achieving infrared spectroscopic detection with a spatial resolution of ~ 10 nm, which is an important technical means for studying the chemical composition and structure of molecules at the nanoscale. However, the weak infrared absorption signals of nanoscale materials pose a significant challenge due to the large mismatch between their dimensions and the wavelength of infrared light. The infrared absorption signals of molecular vibrational modes are proportional to the square of the electromagnetic field intensity at their location, meaning that higher electromagnetic field intensity can significantly enhance molecular detection sensitivity. Acoustic graphene plasmons (AGP), excited by the interaction between free charges in graphene and image charges in metals, exhibit strong optical field localization and electromagnetic field enhancement. These properties make AGP an effective platform for enhancing nano-IR detection sensitivity. However, the fabrication of graphene nanostructures often introduces numerous edge defects due to the limitations of nanofabrication techniques, significantly reducing the electromagnetic field enhancement observed in experiments. Here, using finite element simulation, we theoretically propose a tunable enhanced nano-IR detection platform based on nanocavity-acoustic graphene plasmon (n-AGP), utilizing a graphene/air gap/gold nanocavity structure. This platform avoids the need for nanofabrication of graphene, thereby preventing defects and contamination introduced by processes such as electron beam exposure and plasma etching. By plotting the dispersion of n-AGP, we found that n-AGP has a high wavelength compression capability comparable to AGP (λ0/λAGP = 48). Additionally, due to the introduction of the gold nanocavity structure, n-AGP possess an extremely small mode volume (Vn-AGP ≈ 10-7λ03, λ0 = 6.25 μm). By calculating the electric field intensity distribution (|Enorm|) and the normalized electric field intensity spectrum (i.e., the relationship between frequency and (|Ez|/|E0|) of the n-AGP structure, it is evident that due to the high electron density on the gold surface, electromagnetic waves can reflect at the boundaries of the gold nanocavity and be resonantly enhanced within the nanocavity. At the resonant frequency of n-AGP (1800 cm-1), the electric field enhancement within the cavity is about 50 times. In contrast, at similar resonant frequencies, the electric field enhancement factors of Graphene plasmon (resonant frequency 1770 cm-1) and AGP (resonant frequency 1843 cm-1) are approximately 3 and 2 times, respectively, significantly lower than that of n-AGP. Furthermore, by placing a protein film (60 nm wide and 10 nm high) under the graphene, we calculated the spectral dip depths caused by Fano resonance between n-AGP and AGP with the vibrational modes of protein molecules, thereby validating the enhancement factors of different modes for protein vibrational mode infrared absorption. For the amide I band of proteins, the detection sensitivity of n-AGP is about 60 times higher than that of AGP. Additionally, we discovered that by adjusting the structural parameters of the gold nanocavity, including cavity depth, width, and surface roughness, the response frequency band of n-AGP can be modulated (from 1290 to 2124 cm-1). Specifically, as the cavity depth increases, the electric field enhancement of n-AGP improves, and the wavelength compression capability of n-AGP decreases, causing the resonant frequency to blue-shift (from 1793 cm-1 to 2124 cm-1). As the cavity width increases, the resonant frequency of n-AGP red-shift (from 1793 cm-1 to 1290 cm-1), and the effectiveness of the gold nanocavity boundary in reflecting the resonant electric field within the cavity diminishes, resulting in a decrease in the electric field enhancement factor. With the gradual increase in the roughness of the gold nanocavity bottom, the effective depth of the gold nanocavity increases, causing a blue shift in the n-AGP resonant frequency (from 1793 cm-1 to 1861 cm-1) and an increase in the electric field enhancement factor. Moreover, by adjusting the Fermi level of graphene (from 0.3 eV to 0.6 eV), we achieved dynamic tuning of n-AGP (from 1355 to 1973 cm-1). As the Fermi level of graphene increases, the wavelength compression capability of n-AGP decreases, resulting in a blue-shift in the resonant frequency. Finally, by optimizing the structural parameters and Fermi level of n-AGP, and placing protein particles of different sizes (20 nm, 15 nm, and 10 nm wide, all 10 nm high) into the graphene/gold nanocavity structure, we verified the protein detection capability of n-AGP-enhanced nano-IR. We found that n-AGP can detect the vibrational fingerprint features of the amide I and amide II bands of a single protein particle (10×10 nm) with a 15-fold increase in sensitivity. This n-AGP-based enhanced structure holds promise for providing an important detection platform for nanoscale material characterization and single-molecule detection, with broad application potential in biomedicine, materials science, and geology.
  • [1]

    Yao Z, Xu S, Hu D, Chen X, Dai Q, Liu M 2020 Adv. Opt. Mater. 8 1901042

    [2]

    Chen X, Hu D, Mescall R, You G, Basov D N, Dai Q, Liu M 2019 Adv. Mater. 31 1804774

    [3]

    Lahiri B, Holland G, Centrone A 2013 Small 9 439

    [4]

    Centrone A 2015 Annu. Rev. Anal. Chem. 8 101

    [5]

    Katzenmeyer A M, Holland G, Kjoller K, Centrone A 2015 Anal. Chem. 87 3154

    [6]

    Dazzi A, Glotin F, Carminati R 2010 J. Appl. Phys. 107 124519

    [7]

    Schwartz J J, Jakob D S, Centrone A 2022 Chem. Soc. Rev. 51 5248

    [8]

    Wang L, Wang H, Xu X G 2022 Chem. Soc. Rev. 51 5268

    [9]

    Wang L, Wang H, Wagner M, Yan Y, Jakob D S, Xu X G 2017 Sci. Adv. 3 e1700255

    [10]

    Wang H, Gonzalez-Fialkowski J M, Li W, Xie Q, Yu Y, Xu X G 2021 Anal. Chem. 93 3567

    [11]

    Davies-Jones J A, Davies P R 2022 Mater. Chem. Front. 6 1552

    [12]

    Rajapaksa I, Uenal K, Wickramasinghe H K 2010 Appl. Phys. Lett. 97, 073121

    [13]

    Jahng J, Fishman D A, Park S, Nowak D B, Morrison W A, Wickramasinghe H K, Potma E O 2015 Acc. Chem. Res. 48, 2671

    [14]

    Xue M, Ye S, Ma X, Ye F, Wang C, Zhu L, Yang Y, Chen J 2022 J. Am. Chem. Soc. 144 20278

    [15]

    Gamage S, Howard M, Makita H, Cross B, Hastings G, Luo M, Abate Y 2018 PLoS One 13 e0199112

    [16]

    Kim S Y, Khanal D, Kalionis B, Chrzanowski W 2019 Nat. Protoc. 14 576

    [17]

    Goikoetxea M, Amenabar I, Chimenti S, Paulis M, Leiza J R, Hillenbrand R 2021 Macromolecules 54 995

    [18]

    Tri P N, Prud’homme R E 2018 Macromolecules 51 181

    [19]

    Morsch S, Liu Y, Lyon S B, Gibbon S R 2016 ACS Appl. Mater. Interfaces 8 959

    [20]

    Yang J, Hatcherian J, Hackley P C, Pomerantz A E 2017 Nat. Commun. 8 2179

    [21]

    Hassenkam T, Andersson M P, Dalby K N, Mackenzie D M A, Rosing M T 2017 Nature 548 78

    [22]

    Kebukawa Y, Kobayashi H, Urayama N, Baden N, Kondo M, Zolensky M E, Kobayashi K 2019 Proc. Natl. Acad. Sci. 116 753

    [23]

    Nishida J, Otomo A, Koitaya T, Shiotari A, Minato T, Iino R, Kumagai T 2024 Nano Lett. 24 836

    [24]

    Tang F, Bao P, Su Z 2016 Anal. Chem. 88 4926

    [25]

    Patabendigedara S, Nowak D, Nancarrow M J B, Clark S M 2021 Rev. Sci. Instrum. 92 023103

    [26]

    Yang X, Sun Z, Low T, Hu H, Guo X, Garcia de Abajo F J, Avouris P, Dai Q 2018 Adv. Mater. 30 e1704896

    [27]

    Hu H, Yang X, Zhai F, Hu D, Liu R, Liu K, Sun Z, Dai Q 2016 Nat. Commun. 7 12334

    [28]

    Wu C, Guo X, Duan Y, Lyu W, Hu H, Hu D, Chen K, Sun Z, Gao T, Yang X, Dai Q 2022 Adv. Mater. 34 2110525

    [29]

    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165

    [30]

    Hu H, Yang X, Guo X, Khaliji K, Biswas S R, García de Abajo F J, Low T, Sun Z, Dai Q 2019 Nat. Commun. 10 1131

    [31]

    Bareza N, Jr., Gopalan K K, Alani R, Paulillo B, Pruneri V 2020 ACS Photonics 7 879

    [32]

    Alonso-González P, Nikitin A Y, Gao Y, Woessner A, Lundeberg M B, Principi A, Forcellini N, Yan W, Vélez S, Huber A J, Watanabe K, Taniguchi T, Casanova F, Hueso L E, Polini M, Hone J, Koppens F H L, Hillenbrand R 2017 Nat. Nanotechnol. 12 31

    [33]

    Menabde S G, Lee I-H, Lee S, Ha H, Heiden J T, Yoo D, Kim T-T, Low T, Lee Y H, Oh S-H, Jang M S 2021 Nat. Commun. 12 938

    [34]

    Epstein I, Alcaraz D, Huang Z, Pusapati V-V, Hugonin J-P, Kumar A, Deputy X M, Khodkov T, Rappoport T G, Hong J-Y, Peres N M R, Kong J, Smith D R, Koppens F H L 2020 Science 368 1219

    [35]

    Lundeberg M B, Gao Y, Asgari R, Tan C, Van Duppen B, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187

    [36]

    Alcaraz Iranzo D, Nanot S, Dias E J C, Epstein I, Peng C, Efetov D K, Lundeberg M B, Parret R, Osmond J, Hong J-Y, Kong J, Englund D R, Peres N M R, Koppens F H L 2018 Science 360 291

    [37]

    Chen S, Autore M, Li J, Li P, Alonso-Gonzalez P, Yang Z, Martin-Moreno L, Hillenbrand R, Nikitin A Y 2017 ACS Photonics 4 3089

    [38]

    Olmon R L, Raschke M B 2012 Nanotechnology 23 444001

    [39]

    Low T, Avouris P 2014 ACS Nano 8 1086

    [40]

    Adato R, Altug H 2013 Nat. Commun. 4 2154

    [41]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491

    [42]

    Rickhaus P, Maurand R, Liu M-H, Weiss M, Richter K, Schönenberger C 2013 Nat. Commun. 4 2342

    [43]

    Dorgan V E, Behnam A, Conley H J, Bolotin K I, Pop E 2013 Nano Lett. 13 4581

    [44]

    Hu H, Yu R, Teng H, Hu D, Chen N, Qu Y, Yang X, Chen X, McLeod A S, Alonso-González P, Guo X, Li C, Yao Z, Li Z, Chen J, Sun Z, Liu M, García de Abajo F J, Dai Q 2022 Nat. Commun. 13 1465

    [45]

    Lu Y-H, Morales C, Zhao X, van Spronsen M A, Baskin A, Prendergast D, Yang P, Bechtel H A, Barnard E S, Ogletree D F, Altoe V, Soriano L, Schwartzberg A M, Salmeron M 2020 Nano Lett. 20 6364

    [46]

    Farmer D B, Rodrigo D, Low T, Avouris P 2015 Nano Lett. 15 2582

    [47]

    Zhuang B, Li S, Li S, Yin J 2021 Carbon 173 609

    [48]

    Dregely D, Neubrech F, Duan H, Vogelgesang R, Giessen H 2013 Nat. Commun. 4 2237

    [49]

    Kawata S 2001 Near-field optics and surface plasmon polaritons (Vol. 81) (Springer Science & Business Media) p163

    [50]

    Miao X, Luk T S, Liu P Q 2022 Adv. Mater. 34 2107950

    [51]

    Guo Q, Li C, Deng B, Yuan S, Guinea F, Xia F 2017 ACS Photonics 4 2989

    [52]

    Schwaighofer A, Montemurro M, Freitag S, Kristament C, Culzoni M J, Lendl B 2018 Anal. Chem. 90 7072

    [53]

    Jahng J, Fishman D A, Park S, Nowak D B, Morrison W A, Wickramasinghe H K, Potma E O 2015 Acc. Chem. Res. 48 2671

    [54]

    Kavungal D, Magalhães P, Kumar S T, Kolla R, Lashuel H A, Altug H 2023 Sci. Adv. 9 eadg9644

    [55]

    López-Lorente Á I, Mizaikoff B 2016 Anal. Bioanal. Chem. 408 2875

    [56]

    Zhang W, Chen L, Chen J, Wang L, Gui X, Ran J, Xu G, Zhao H, Zeng M, Ji J, Qian L, Zhou J, Ouyang H, Zou X 2017 Adv. Healthcare Mater. 6 1700121

    [57]

    Hoarau M, Badieyan S, Marsh E N G 2017 Org. Biomol. Chem. 15 9539

    [58]

    Talari A C S, Martinez M A G, Movasaghi Z, Rehman S, Rehman I U 2017 Appl. Spectrosc. Rev. 52 456

    [59]

    Araki K, Yagi N, Ikemoto Y, Yagi H, Choong C-J, Hayakawa H, Beck G, Sumi H, Fujimura H, Moriwaki T, Nagai Y, Goto Y, Mochizuki H 2015 Sci. Rep. 5 17625

    [60]

    Nabers A, Ollesch J, Schartner J, Kötting C, Genius J, Haußmann U, Klafki H, Wiltfang J, Gerwert K 2016 J. Biophotonics 9 224

    [61]

    Nabers A, Ollesch J, Schartner J, Kötting C, Genius J, Hafermann H, Klafki H, Gerwert K, Wiltfang J 2016 Anal. Chem. 88 2755

    [62]

    Lashuel H A, Overk C R, Oueslati A, Masliah E 2013 Nat. Rev. Neurosci. 14 38

    [63]

    Conway K A, Lee S-J, Rochet J-C, Ding T T, Williamson R E, Lansbury P T 2000 Proc. Natl. Acad. Sci. 97 571

    [64]

    Hardy J A, Higgins G A 1992 Science 256 184

    [65]

    Ballatore C, Lee V M Y, Trojanowski J Q 2007 Nat. Rev. Neurosci. 8 663

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, doi: 10.7498/aps.73.20231657
    [2] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, doi: 10.7498/aps.72.20222467
    [3] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光. 物理学报, doi: 10.7498/aps.71.20211613
    [4] 郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用. 物理学报, doi: 10.7498/aps.70.20210349
    [5] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 物理学报, doi: 10.7498/aps.70.20210445
    [6] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, doi: 10.7498/aps.69.20200575
    [7] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, doi: 10.7498/aps.69.20200200
    [8] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, doi: 10.7498/aps.69.20191645
    [9] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, doi: 10.7498/aps.68.20190692
    [10] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, doi: 10.7498/aps.68.20191036
    [11] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, doi: 10.7498/aps.68.20190903
    [12] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, doi: 10.7498/aps.67.20172153
    [13] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, doi: 10.7498/aps.67.20180196
    [14] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, doi: 10.7498/aps.66.145201
    [15] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, doi: 10.7498/aps.65.236801
    [16] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, doi: 10.7498/aps.64.108402
    [17] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, doi: 10.7498/aps.63.057803
    [18] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, doi: 10.7498/aps.63.154601
    [19] 曾婷婷, 李鹏程, 周效信. 两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 物理学报, doi: 10.7498/aps.63.203201
    [20] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, doi: 10.7498/aps.63.127303
计量
  • 文章访问数:  230
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-17

/

返回文章
返回