搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米微结构表面与石墨烯薄膜的界面黏附特性研究

白清顺 沈荣琦 何欣 刘顺 张飞虎 郭永博

引用本文:
Citation:

纳米微结构表面与石墨烯薄膜的界面黏附特性研究

白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博

Interface adhesion property between graphene film and surface of nanometric microstructure

Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo
PDF
导出引用
  • 石墨烯性能的发挥受石墨烯表面形貌的影响,而石墨烯表面形貌则与基底密切相关.石墨烯在纳米微结构表面的吸附与剥离可以为石墨烯的功能化制备和转移提供理论基础.分子动力学模拟能提供石墨烯在纳米微结构表面的吸附构型和剥离特性等详细信息,可以弥补实验的不足.本文利用LAMMPS分子动力学模拟软件,从吸附能角度研究了石墨烯在矩形微结构表面的黏附特性,并进一步探讨了石墨烯从矩形微结构表面剥离的行为.研究表明:石墨烯的吸附构型在矩形微结构表面的转变是连续的,但由部分贴合状态向完全贴合状态的转变是一个反复的过程,当石墨烯完全贴合微结构表面时吸附能最大;从微结构表面剥离石墨烯时,剥离力会出现周期性的波动.剥离过程表现为两种形式:完全贴合时,石墨烯是直接滑过槽底;而当悬浮构型或部分贴合构型时,石墨烯是直接从微结构表面分离.本文给出了平均剥离力随微结构尺寸参数变化的理论公式,该公式与模拟结果拟合较好.此外,随着剥离角度的变大,平均剥离力先变大后变小,从平整基底表面剥离具有Stone-Wales缺陷结构的石墨烯会使剥离力变大.研究结果可为探究石墨烯在纳米微结构表面的剥离行为、揭示其黏附机理提供理论参考.
    The performance of graphene can be influenced by its surface mophology, while the surface morphology of graphene is closely related to the substrate. The adsorption and peeling process of graphene on a corrugated surface can provide a theoretical basis for the functional preparation and transfer of graphene. In this work, the adhesion properties and peeling process of graphene on nanostructured substrate are investigated by using molecular dynamics (MD) simulation. As an effective tool of atomic collision theory, MD simulation can provide detailed information about the adsorption configuration and peeling properties of graphene on the nanostructure surface, making up for the deficiency of experiment. The results indicate that graphene can conformably coat on the surface, partially adhere to or remain flat on the top of the stepped substrate. We find that the continuous transition occurs in the adsorption configuration of graphene on the stepped substrate, but the repeated process appears in the transition from partial adherence to conformable coating. When graphene coats on the nanostructured substrate conformably, the adsorption energy can reach its peak value. The adsorption configuration of graphene can change from suspension to partial adhesion after the adsorption energy has exceeded 360 eV -2. It is also shown that the average peeling force fluctuates periodically when the absorption configuration of graphene is conformably coated or suspended on the stepped substrate. Two kinds of behaviors can be noticed in the peeling process. The graphene can directly slide over the bottom while it is fully coated on the surface. The graphene is separated directly from the corrugated surface while it suspends or partially adheres to the surface. If the absorption configuration of graphene is in the suspension state, the average peeling force appears to change drastically within a section of peeling distance and then decreases immediately below zero. Although the flexural stiffness of graphene can be overcome, the interfacial friction between graphene and the substrate is also an essential factor affecting the final adsorption configuration. In this paper, we propose a theoretical formula for the average peeling force according to the changes of size parameters on the nanostructured substrate. The theoretical formula is validated by the simulation results. In addition, with the increase of peeling angle, the average peeling force first increases and then becomes smaller. As a result, a larger average peeling force can be found when the graphene with Stone-Wales defect structure is peeled from the flat substrate. With the increase of double vacancy defect, the maximum peeling force decreases in a certain range, whereas it increases beyond this range. This work can provide a theoretical reference for exploring the peeling property and the adhesion mechanism of graphene on nanostructure surface.
      Corresponding author: Bai Qing-Shun, qshbai@hit.edu.cn;srqlanzhou@126.com ; Shen Rong-Qi, qshbai@hit.edu.cn;srqlanzhou@126.com
    • Funds: Project supported by the Key Project of National Natural Science Foundation of China (Grant No. 51535003) and the National Natural Science Foundation of China (Grant Nos. 51575138, 51775146, 51405111).
    [1]

    Yuk J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A, Alivisatos A P 2012 Science 336 61

    [2]

    Xia S, Ponson L, Ravichandran G, Bhattacharya K 2012 Phys. Rev. Lett. 108 196101

    [3]

    Das S, Lahiri D, Lee D, Agarwal A, Choi W 2013 Carbon 59 121

    [4]

    Neek-Amal M, Peeters F M 2012 Phys. Rev. B 85 195445

    [5]

    Gao W, Huang R 2011 J. Phys. D: Appl. Phys. 44 452001

    [6]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

    [7]

    Wang W D, Li S, Min J J, Shen C L 2015 J. Nanosci. Nanotechnol. 15 2970

    [8]

    Wang W D, Min J J, Li S, Yi C L, Shen C L 2014 Nanotechnology (IEEE-NANO) 13th IEEE Conference on IEEE Beijing, China, August 5-8, 2013 p1071

    [9]

    Tang X Q, Zhang K, Deng X H, Zhang P, Pei Y 2016 Mol. Simul. 42 1

    [10]

    Chen H, Chen S 2013 J. Phys. D: Appl. Phys. 46 435305

    [11]

    He Y, Yu W, Ouyang G 2014 Phys. Chem. Chem. Phys. 16 11390

    [12]

    Reserbat-Plantey A, Kalita D, Han Z, Ferlazzo L, Autier-Laurent S, Komatsu K, Li C, Weil R, Ralko A, Marty L, Guéron S, Bendiab N, Bouchiat H, Bouchiat V 2014 Nano Lett. 14 5044

    [13]

    Rasool H I, Song E B, Allen M J, Wassei J K, Kaner R B, Wang K L, Weiller B H, Gimzewski J K 2010 Nano Lett. 11 251

    [14]

    Politano A 2016 Nano Res. 9 1795

    [15]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009

    [16]

    Lauffer P, Emtsev K V, Graupner R, Seyller T, Ley L, Reshanov S A, Weber H B 2008 Phys. Rev. B 77 155426

    [17]

    Bolen M L, Harrison S E, Biedermann L B, Capano M A 2009 Phys. Rev. B 80 115433

    [18]

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302 (in Chinese) [康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强 2012 物理学报 61 037302]

    [19]

    Belytschko T, Xiao S P, Schatz G C, Ruoff R S 2002 Phys. Rev. B 65 235430

    [20]

    Dewapriya M A N, Rajapakse R K N D 2016 Composites Part B Eng. 98 339

    [21]

    Kendall K 1975 J. Phys. D: Appl. Phys. 8 1449

    [22]

    Coraux J, N’Diaye A T, Busse C, Michely T 2008 Nano Lett. 8 565

    [23]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [24]

    Yoon T, Shin W C, Kim T Y, Mun J H, Kim T S, Cho B J 2012 Nano Lett. 12 1448

    [25]

    Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J 2008 Phys. Rev. Lett. 101 026803

    [26]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543

    [27]

    Ogata S, Li J, Yip S 2002 Science 298 807

  • [1]

    Yuk J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A, Alivisatos A P 2012 Science 336 61

    [2]

    Xia S, Ponson L, Ravichandran G, Bhattacharya K 2012 Phys. Rev. Lett. 108 196101

    [3]

    Das S, Lahiri D, Lee D, Agarwal A, Choi W 2013 Carbon 59 121

    [4]

    Neek-Amal M, Peeters F M 2012 Phys. Rev. B 85 195445

    [5]

    Gao W, Huang R 2011 J. Phys. D: Appl. Phys. 44 452001

    [6]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

    [7]

    Wang W D, Li S, Min J J, Shen C L 2015 J. Nanosci. Nanotechnol. 15 2970

    [8]

    Wang W D, Min J J, Li S, Yi C L, Shen C L 2014 Nanotechnology (IEEE-NANO) 13th IEEE Conference on IEEE Beijing, China, August 5-8, 2013 p1071

    [9]

    Tang X Q, Zhang K, Deng X H, Zhang P, Pei Y 2016 Mol. Simul. 42 1

    [10]

    Chen H, Chen S 2013 J. Phys. D: Appl. Phys. 46 435305

    [11]

    He Y, Yu W, Ouyang G 2014 Phys. Chem. Chem. Phys. 16 11390

    [12]

    Reserbat-Plantey A, Kalita D, Han Z, Ferlazzo L, Autier-Laurent S, Komatsu K, Li C, Weil R, Ralko A, Marty L, Guéron S, Bendiab N, Bouchiat H, Bouchiat V 2014 Nano Lett. 14 5044

    [13]

    Rasool H I, Song E B, Allen M J, Wassei J K, Kaner R B, Wang K L, Weiller B H, Gimzewski J K 2010 Nano Lett. 11 251

    [14]

    Politano A 2016 Nano Res. 9 1795

    [15]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009

    [16]

    Lauffer P, Emtsev K V, Graupner R, Seyller T, Ley L, Reshanov S A, Weber H B 2008 Phys. Rev. B 77 155426

    [17]

    Bolen M L, Harrison S E, Biedermann L B, Capano M A 2009 Phys. Rev. B 80 115433

    [18]

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302 (in Chinese) [康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强 2012 物理学报 61 037302]

    [19]

    Belytschko T, Xiao S P, Schatz G C, Ruoff R S 2002 Phys. Rev. B 65 235430

    [20]

    Dewapriya M A N, Rajapakse R K N D 2016 Composites Part B Eng. 98 339

    [21]

    Kendall K 1975 J. Phys. D: Appl. Phys. 8 1449

    [22]

    Coraux J, N’Diaye A T, Busse C, Michely T 2008 Nano Lett. 8 565

    [23]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [24]

    Yoon T, Shin W C, Kim T Y, Mun J H, Kim T S, Cho B J 2012 Nano Lett. 12 1448

    [25]

    Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J 2008 Phys. Rev. Lett. 101 026803

    [26]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543

    [27]

    Ogata S, Li J, Yip S 2002 Science 298 807

  • [1] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构. 物理学报, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [2] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [3] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [4] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [5] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [6] 汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽. 石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究. 物理学报, 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [7] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [8] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究. 物理学报, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [9] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [10] 王俊珺, 李涛, 李雄鹰, 李辉. 液态镓在石墨烯表面的润湿性及形貌特征. 物理学报, 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [11] 董若宇, 曹鹏, 曹桂兴, 胡帼杰, 曹炳阳. 直流电场下水中石墨烯定向行为研究. 物理学报, 2017, 66(1): 014702. doi: 10.7498/aps.66.014702
    [12] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [13] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [14] 李艳茹, 何秋香, 王芳, 向浪, 钟建新, 孟利军. 金属纳米薄膜在石墨基底表面的动力学演化. 物理学报, 2016, 65(3): 036804. doi: 10.7498/aps.65.036804
    [15] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [16] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究. 物理学报, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [17] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [18] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究. 物理学报, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [19] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  8353
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-29
  • 修回日期:  2017-11-02
  • 刊出日期:  2018-02-05

/

返回文章
返回