搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯的声子热学性质研究

叶振强 曹炳阳 过增元

引用本文:
Citation:

石墨烯的声子热学性质研究

叶振强, 曹炳阳, 过增元

Study on thermal characteristics of phonons in graphene

Ye Zhen-Qiang, Cao Bing-Yang, Guo Zeng-Yuan
PDF
导出引用
  • 声子是石墨烯导热过程中的主要载体,而声子的弛豫时间又是其中最基本、最重要的物理量. 本文采用简正模式分解法研究了石墨烯声子的弛豫时间,并且借此分析了不同声子在导热过程中的贡献. 该方法通过平衡分子动力学模拟实现,首先通过模拟得到单个声子的能量自相关函数衰减曲线,并进一步采用拟合和积分两种方法得到单个声子的弛豫时间. 然后,研究了弛豫时间与波矢、频率和温度的关系. 结果发现,弛豫时间随波矢的变化与对应的色散关系相近,弛豫时间与频率和温度的关系符合理论模型:1/=nTm,其中声学支的n 为1.56,而光学支结果较为发散,指数m对于不同声子支结果略有不同. 最后,还研究了不同频率声子对导热的贡献,发现低频声子在态密度上占有绝对优势,并且其弛豫时间整体高于高频声子,所以低频声子对导热的贡献占据主导地位.
    Phonons are the main energy carriers for heat conduction in graphene. One of the most important and basic thermal properties is the relaxation time. In this paper, phonon relaxation times are investigated by a normal mode decomposition method to reveal the distinctions of the different phonon modes. The method is based on equilibrium molecular dynamics simulation. In the simulations, the heat current autocorrelation functions are obtained for each single phonon, and the relaxation times are extracted by fitting the functions. In addition, the relations among relaxation time, wave vector, frequency, and temperature are examined. It is found that the variation tendency of the relaxation time with wave vector is close to that of the dispersion with wave vector. For frequency and temperature, they are in agreement with the theoretical model: 1/=nTm. It is shown thatn is 1.56 for acoustic phonons, while for optical phonons, it varies slightly with frequencies; and m is slightly different for each mode. Finally, the contributions of different phonon modes to thermal conductivity are investigated. It is found that low frequency phonons dominate the heat conduction process because of the relatively high relaxation time and density of states.
    • 基金项目: 国家自然科学基金(批准号:51322603,51356001,51136001,51321002)、新世纪优秀人才支持计划、清华大学自主科研计划和清华信息科学与技术国家实验室资助的课题.
    • Funds: Project supported by the National Natural Foundation of China (Grant Nos. 51322603, 51356001, 51136001, 51321002), the Program for New Century Excellent Talents in University, the Initiative Scientific Research Program of Tsinghua University and Tsinghua National Laboratory for Information Science and Technology.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S, Grigorieva I V 2004 Science 306 666

    [2]
    [3]
    [4]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413

    [5]
    [6]

    Balandin A A 2011 Nat. Mater. 10 569

    [7]
    [8]

    Sevinçi H, Cuniberti G 2010 Phys. Rev. B 81 113401

    [9]
    [10]

    Hu J, Ruan X, Chen Y P 2009 Nano Lett. 9 2730

    [11]
    [12]

    Hu J N, Schiffli S, Vallabhaneni A, Ruan X L, Chen Y P 2010 Appl. Phys. Lett. 97 133107

    [13]

    Xu X D, Gabor N M, Alden J S, van der Zande A M, McEuen P L 2010 Nano Lett. 10 562

    [14]
    [15]
    [16]

    Zheng B Y, Dong H L, Chen F F 2014 Acta Phys. Sin. 63 076501 (in Chinese) [郑伯昱, 董慧龙, 陈非凡 2014 物理学报 63 076501]

    [17]
    [18]

    Kang K, Abdula D, Cahill D G, Shim M 2010 Phys. Rev. B 81 165405

    [19]
    [20]

    Lindsay L, Broido D A, Mingo N 2011 Phys. Rev. B 83 235428

    [21]

    Bonini N, Lazzeri M, Marzari N, Mauri F 2007 Phys. Rev. Lett. 99 176802

    [22]
    [23]
    [24]

    Ladd A J C, Moran B, Hoover W G 1986 Phys. Rev. B 34 5058

    [25]

    McGaughey A J H, Kaviany M 2004 Phys. Rev. B 69 094303

    [26]
    [27]

    Kaviany M 2008 Heat Transfer Physics (Cambridge: Cambridge University Press) p175

    [28]
    [29]

    Bao H J 2013 Acta Phys. Sin. 62 186302 (in Chinese) [鲍华 2013 物理学报 62 186302]

    [30]
    [31]

    Henry A S, Chen G 2008 J. Comput. Theor. Nanosci. 5 141

    [32]
    [33]

    Henry A S, Chen G 2009 Phys. Rev. B 79 144305.

    [34]
    [35]
    [36]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [37]

    Hu G J, Cao B Y 2012 Mol. Simul. 38 823

    [38]
    [39]
    [40]

    Ye Z Q, Cao B Y, Guo Z Y 2014 Carbon 66 567

    [41]
    [42]

    Hu G J, Cao B Y 2013 J. Appl. Phys. 114 224308

    [43]

    Hui Z X, He P F, Dai Y, W A H 2014 Acta Phys. Sin. 63 074401 (in Chinese) [惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401]

    [44]
    [45]
    [46]

    Born M, Huang K 2011 Dynamical Theory of Crystal Lattices (Beijing: Peking University Press) p32 (in Chinese) [玻恩, 黄昆 2011 晶格动力学理论 (北京: 北京大学出版社) 第32页]

    [47]

    Tohei T, Kuwabara A, Oba F, Tanaka I 2006 Phys. Rev. B 73 064304

    [48]
    [49]

    Goicochea J V, Madrid M, Amon C 2010 J. Heat Transf-Trans ASME 132 012401

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S, Grigorieva I V 2004 Science 306 666

    [2]
    [3]
    [4]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413

    [5]
    [6]

    Balandin A A 2011 Nat. Mater. 10 569

    [7]
    [8]

    Sevinçi H, Cuniberti G 2010 Phys. Rev. B 81 113401

    [9]
    [10]

    Hu J, Ruan X, Chen Y P 2009 Nano Lett. 9 2730

    [11]
    [12]

    Hu J N, Schiffli S, Vallabhaneni A, Ruan X L, Chen Y P 2010 Appl. Phys. Lett. 97 133107

    [13]

    Xu X D, Gabor N M, Alden J S, van der Zande A M, McEuen P L 2010 Nano Lett. 10 562

    [14]
    [15]
    [16]

    Zheng B Y, Dong H L, Chen F F 2014 Acta Phys. Sin. 63 076501 (in Chinese) [郑伯昱, 董慧龙, 陈非凡 2014 物理学报 63 076501]

    [17]
    [18]

    Kang K, Abdula D, Cahill D G, Shim M 2010 Phys. Rev. B 81 165405

    [19]
    [20]

    Lindsay L, Broido D A, Mingo N 2011 Phys. Rev. B 83 235428

    [21]

    Bonini N, Lazzeri M, Marzari N, Mauri F 2007 Phys. Rev. Lett. 99 176802

    [22]
    [23]
    [24]

    Ladd A J C, Moran B, Hoover W G 1986 Phys. Rev. B 34 5058

    [25]

    McGaughey A J H, Kaviany M 2004 Phys. Rev. B 69 094303

    [26]
    [27]

    Kaviany M 2008 Heat Transfer Physics (Cambridge: Cambridge University Press) p175

    [28]
    [29]

    Bao H J 2013 Acta Phys. Sin. 62 186302 (in Chinese) [鲍华 2013 物理学报 62 186302]

    [30]
    [31]

    Henry A S, Chen G 2008 J. Comput. Theor. Nanosci. 5 141

    [32]
    [33]

    Henry A S, Chen G 2009 Phys. Rev. B 79 144305.

    [34]
    [35]
    [36]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [37]

    Hu G J, Cao B Y 2012 Mol. Simul. 38 823

    [38]
    [39]
    [40]

    Ye Z Q, Cao B Y, Guo Z Y 2014 Carbon 66 567

    [41]
    [42]

    Hu G J, Cao B Y 2013 J. Appl. Phys. 114 224308

    [43]

    Hui Z X, He P F, Dai Y, W A H 2014 Acta Phys. Sin. 63 074401 (in Chinese) [惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401]

    [44]
    [45]
    [46]

    Born M, Huang K 2011 Dynamical Theory of Crystal Lattices (Beijing: Peking University Press) p32 (in Chinese) [玻恩, 黄昆 2011 晶格动力学理论 (北京: 北京大学出版社) 第32页]

    [47]

    Tohei T, Kuwabara A, Oba F, Tanaka I 2006 Phys. Rev. B 73 064304

    [48]
    [49]

    Goicochea J V, Madrid M, Amon C 2010 J. Heat Transf-Trans ASME 132 012401

  • [1] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212203
    [2] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [3] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212309
    [4] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [5] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [6] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [7] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [8] 王俊珺, 李涛, 李雄鹰, 李辉. 液态镓在石墨烯表面的润湿性及形貌特征. 物理学报, 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [9] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [10] 任晓霞, 申凤娟, 林歆悠, 郑瑞伦. 石墨烯低温热膨胀和声子弛豫时间随温度的变化规律. 物理学报, 2017, 66(22): 224701. doi: 10.7498/aps.66.224701
    [11] 董若宇, 曹鹏, 曹桂兴, 胡帼杰, 曹炳阳. 直流电场下水中石墨烯定向行为研究. 物理学报, 2017, 66(1): 014702. doi: 10.7498/aps.66.014702
    [12] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [13] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [14] 杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭. 单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究. 物理学报, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [15] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [16] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [17] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学. 物理学报, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [18] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [19] 颜克凤, 李小森, 陈朝阳, 李 刚, 李志宝. 用分子动力学模拟甲烷水合物热激法结合化学试剂法分解. 物理学报, 2007, 56(11): 6727-6735. doi: 10.7498/aps.56.6727
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  5745
  • PDF下载量:  1461
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-27
  • 修回日期:  2014-04-05
  • 刊出日期:  2014-08-05

石墨烯的声子热学性质研究

  • 1. 清华大学工程力学系, 热科学与动力工程教育部重点实验室, 北京 100084
    基金项目: 国家自然科学基金(批准号:51322603,51356001,51136001,51321002)、新世纪优秀人才支持计划、清华大学自主科研计划和清华信息科学与技术国家实验室资助的课题.

摘要: 声子是石墨烯导热过程中的主要载体,而声子的弛豫时间又是其中最基本、最重要的物理量. 本文采用简正模式分解法研究了石墨烯声子的弛豫时间,并且借此分析了不同声子在导热过程中的贡献. 该方法通过平衡分子动力学模拟实现,首先通过模拟得到单个声子的能量自相关函数衰减曲线,并进一步采用拟合和积分两种方法得到单个声子的弛豫时间. 然后,研究了弛豫时间与波矢、频率和温度的关系. 结果发现,弛豫时间随波矢的变化与对应的色散关系相近,弛豫时间与频率和温度的关系符合理论模型:1/=nTm,其中声学支的n 为1.56,而光学支结果较为发散,指数m对于不同声子支结果略有不同. 最后,还研究了不同频率声子对导热的贡献,发现低频声子在态密度上占有绝对优势,并且其弛豫时间整体高于高频声子,所以低频声子对导热的贡献占据主导地位.

English Abstract

参考文献 (49)

目录

    /

    返回文章
    返回