搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯的声子热学性质研究

叶振强 曹炳阳 过增元

引用本文:
Citation:

石墨烯的声子热学性质研究

叶振强, 曹炳阳, 过增元

Study on thermal characteristics of phonons in graphene

Ye Zhen-Qiang, Cao Bing-Yang, Guo Zeng-Yuan
PDF
导出引用
  • 声子是石墨烯导热过程中的主要载体,而声子的弛豫时间又是其中最基本、最重要的物理量. 本文采用简正模式分解法研究了石墨烯声子的弛豫时间,并且借此分析了不同声子在导热过程中的贡献. 该方法通过平衡分子动力学模拟实现,首先通过模拟得到单个声子的能量自相关函数衰减曲线,并进一步采用拟合和积分两种方法得到单个声子的弛豫时间. 然后,研究了弛豫时间与波矢、频率和温度的关系. 结果发现,弛豫时间随波矢的变化与对应的色散关系相近,弛豫时间与频率和温度的关系符合理论模型:1/=nTm,其中声学支的n 为1.56,而光学支结果较为发散,指数m对于不同声子支结果略有不同. 最后,还研究了不同频率声子对导热的贡献,发现低频声子在态密度上占有绝对优势,并且其弛豫时间整体高于高频声子,所以低频声子对导热的贡献占据主导地位.
    Phonons are the main energy carriers for heat conduction in graphene. One of the most important and basic thermal properties is the relaxation time. In this paper, phonon relaxation times are investigated by a normal mode decomposition method to reveal the distinctions of the different phonon modes. The method is based on equilibrium molecular dynamics simulation. In the simulations, the heat current autocorrelation functions are obtained for each single phonon, and the relaxation times are extracted by fitting the functions. In addition, the relations among relaxation time, wave vector, frequency, and temperature are examined. It is found that the variation tendency of the relaxation time with wave vector is close to that of the dispersion with wave vector. For frequency and temperature, they are in agreement with the theoretical model: 1/=nTm. It is shown thatn is 1.56 for acoustic phonons, while for optical phonons, it varies slightly with frequencies; and m is slightly different for each mode. Finally, the contributions of different phonon modes to thermal conductivity are investigated. It is found that low frequency phonons dominate the heat conduction process because of the relatively high relaxation time and density of states.
    • 基金项目: 国家自然科学基金(批准号:51322603,51356001,51136001,51321002)、新世纪优秀人才支持计划、清华大学自主科研计划和清华信息科学与技术国家实验室资助的课题.
    • Funds: Project supported by the National Natural Foundation of China (Grant Nos. 51322603, 51356001, 51136001, 51321002), the Program for New Century Excellent Talents in University, the Initiative Scientific Research Program of Tsinghua University and Tsinghua National Laboratory for Information Science and Technology.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S, Grigorieva I V 2004 Science 306 666

    [2]
    [3]
    [4]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413

    [5]
    [6]

    Balandin A A 2011 Nat. Mater. 10 569

    [7]
    [8]

    Sevinçi H, Cuniberti G 2010 Phys. Rev. B 81 113401

    [9]
    [10]

    Hu J, Ruan X, Chen Y P 2009 Nano Lett. 9 2730

    [11]
    [12]

    Hu J N, Schiffli S, Vallabhaneni A, Ruan X L, Chen Y P 2010 Appl. Phys. Lett. 97 133107

    [13]

    Xu X D, Gabor N M, Alden J S, van der Zande A M, McEuen P L 2010 Nano Lett. 10 562

    [14]
    [15]
    [16]

    Zheng B Y, Dong H L, Chen F F 2014 Acta Phys. Sin. 63 076501 (in Chinese) [郑伯昱, 董慧龙, 陈非凡 2014 物理学报 63 076501]

    [17]
    [18]

    Kang K, Abdula D, Cahill D G, Shim M 2010 Phys. Rev. B 81 165405

    [19]
    [20]

    Lindsay L, Broido D A, Mingo N 2011 Phys. Rev. B 83 235428

    [21]

    Bonini N, Lazzeri M, Marzari N, Mauri F 2007 Phys. Rev. Lett. 99 176802

    [22]
    [23]
    [24]

    Ladd A J C, Moran B, Hoover W G 1986 Phys. Rev. B 34 5058

    [25]

    McGaughey A J H, Kaviany M 2004 Phys. Rev. B 69 094303

    [26]
    [27]

    Kaviany M 2008 Heat Transfer Physics (Cambridge: Cambridge University Press) p175

    [28]
    [29]

    Bao H J 2013 Acta Phys. Sin. 62 186302 (in Chinese) [鲍华 2013 物理学报 62 186302]

    [30]
    [31]

    Henry A S, Chen G 2008 J. Comput. Theor. Nanosci. 5 141

    [32]
    [33]

    Henry A S, Chen G 2009 Phys. Rev. B 79 144305.

    [34]
    [35]
    [36]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [37]

    Hu G J, Cao B Y 2012 Mol. Simul. 38 823

    [38]
    [39]
    [40]

    Ye Z Q, Cao B Y, Guo Z Y 2014 Carbon 66 567

    [41]
    [42]

    Hu G J, Cao B Y 2013 J. Appl. Phys. 114 224308

    [43]

    Hui Z X, He P F, Dai Y, W A H 2014 Acta Phys. Sin. 63 074401 (in Chinese) [惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401]

    [44]
    [45]
    [46]

    Born M, Huang K 2011 Dynamical Theory of Crystal Lattices (Beijing: Peking University Press) p32 (in Chinese) [玻恩, 黄昆 2011 晶格动力学理论 (北京: 北京大学出版社) 第32页]

    [47]

    Tohei T, Kuwabara A, Oba F, Tanaka I 2006 Phys. Rev. B 73 064304

    [48]
    [49]

    Goicochea J V, Madrid M, Amon C 2010 J. Heat Transf-Trans ASME 132 012401

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S, Grigorieva I V 2004 Science 306 666

    [2]
    [3]
    [4]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413

    [5]
    [6]

    Balandin A A 2011 Nat. Mater. 10 569

    [7]
    [8]

    Sevinçi H, Cuniberti G 2010 Phys. Rev. B 81 113401

    [9]
    [10]

    Hu J, Ruan X, Chen Y P 2009 Nano Lett. 9 2730

    [11]
    [12]

    Hu J N, Schiffli S, Vallabhaneni A, Ruan X L, Chen Y P 2010 Appl. Phys. Lett. 97 133107

    [13]

    Xu X D, Gabor N M, Alden J S, van der Zande A M, McEuen P L 2010 Nano Lett. 10 562

    [14]
    [15]
    [16]

    Zheng B Y, Dong H L, Chen F F 2014 Acta Phys. Sin. 63 076501 (in Chinese) [郑伯昱, 董慧龙, 陈非凡 2014 物理学报 63 076501]

    [17]
    [18]

    Kang K, Abdula D, Cahill D G, Shim M 2010 Phys. Rev. B 81 165405

    [19]
    [20]

    Lindsay L, Broido D A, Mingo N 2011 Phys. Rev. B 83 235428

    [21]

    Bonini N, Lazzeri M, Marzari N, Mauri F 2007 Phys. Rev. Lett. 99 176802

    [22]
    [23]
    [24]

    Ladd A J C, Moran B, Hoover W G 1986 Phys. Rev. B 34 5058

    [25]

    McGaughey A J H, Kaviany M 2004 Phys. Rev. B 69 094303

    [26]
    [27]

    Kaviany M 2008 Heat Transfer Physics (Cambridge: Cambridge University Press) p175

    [28]
    [29]

    Bao H J 2013 Acta Phys. Sin. 62 186302 (in Chinese) [鲍华 2013 物理学报 62 186302]

    [30]
    [31]

    Henry A S, Chen G 2008 J. Comput. Theor. Nanosci. 5 141

    [32]
    [33]

    Henry A S, Chen G 2009 Phys. Rev. B 79 144305.

    [34]
    [35]
    [36]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [37]

    Hu G J, Cao B Y 2012 Mol. Simul. 38 823

    [38]
    [39]
    [40]

    Ye Z Q, Cao B Y, Guo Z Y 2014 Carbon 66 567

    [41]
    [42]

    Hu G J, Cao B Y 2013 J. Appl. Phys. 114 224308

    [43]

    Hui Z X, He P F, Dai Y, W A H 2014 Acta Phys. Sin. 63 074401 (in Chinese) [惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401]

    [44]
    [45]
    [46]

    Born M, Huang K 2011 Dynamical Theory of Crystal Lattices (Beijing: Peking University Press) p32 (in Chinese) [玻恩, 黄昆 2011 晶格动力学理论 (北京: 北京大学出版社) 第32页]

    [47]

    Tohei T, Kuwabara A, Oba F, Tanaka I 2006 Phys. Rev. B 73 064304

    [48]
    [49]

    Goicochea J V, Madrid M, Amon C 2010 J. Heat Transf-Trans ASME 132 012401

  • [1] 王俊, 蔡飞燕, 张汝钧, 李永川, 周伟, 李飞, 邓科, 郑海荣. 基于压电声子晶体板波声场的微粒操控. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231886
    [2] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [3] 赖赣平, 张晓卫. 考虑原子亚稳态的镥金属蒸发过程模拟研究. 物理学报, 2023, 72(18): 184702. doi: 10.7498/aps.72.20230602
    [4] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [5] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化. 物理学报, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [6] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [7] 文琳, 樊群超, 蹇君, 范志祥, 李会东, 付佳, 马杰, 谢锋. 基于SO分子振转能级计算其宏观气体摩尔热容. 物理学报, 2022, 71(17): 175101. doi: 10.7498/aps.71.20212273
    [8] 李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海. 强激光场下原子超快动力学过程中的能量交换. 物理学报, 2022, 71(4): 043201. doi: 10.7498/aps.71.20211703
    [9] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学. 物理学报, 2022, 71(7): 074207. doi: 10.7498/aps.70.20220270
    [10] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [11] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [12] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [13] 武瑞琪, 郭迎春, 王兵兵. SF6分子最高占据轨道对称性的判断. 物理学报, 2019, 68(8): 080201. doi: 10.7498/aps.68.20182231
    [14] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
计量
  • 文章访问数:  8896
  • PDF下载量:  1550
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-27
  • 修回日期:  2014-04-05
  • 刊出日期:  2014-08-05

/

返回文章
返回