搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂网络中带有应急恢复机理的级联动力学分析

李钊 郭燕慧 徐国爱 胡正名

引用本文:
Citation:

复杂网络中带有应急恢复机理的级联动力学分析

李钊, 郭燕慧, 徐国爱, 胡正名

Analysis of cascading dynamics in complex networks with an emergency recovery mechanism

Li Zhao, Guo Yan-Hui, Xu Guo-Ai, Hu Zheng-Ming
PDF
导出引用
  • 提出带有应急恢复机理的网络级联故障模型,研究模型在最近邻耦合网络,Erdos-Renyi随机网络,Watts-Strogatz小世界网络和Barabasi-Albert无标度网络四种网络拓扑下的网络级联动力学行为. 给出了应急恢复机理和网络效率的定义,并研究了模型中各参数对网络效率和网络节点故障率在级联故障过程中变化情况的影响. 结果表明,模型中应急恢复概率的增大减缓了网络效率的降低速度和节点故障率的增长速度,并且提高了网络的恢复能力. 而且网络中节点负载容量越大,网络效率降低速度和节点故障率的增长速度越慢. 同时,随着节点过载故障概率的减小,网络效率的降低速度和节点故障率的增长速度也逐渐减缓. 此外,对不同网络拓扑中网络效率和网络节点故障率在级联故障过程中的变化情况进行分析,结果发现网络拓扑节点度分布的异质化程度的增大,提高了级联故障所导致的网络效率的降低速度和网络节点故障率的增长速度. 以上结果分析了复杂网络中带有应急恢复机理的网络级联动力学行为,为实际网络中级联故障现象的控制和防范提供了参考.
    A model of cascading failures in complex networks with an emergency recovery mechanism is proposed in this paper, and the cascading dynamics is investigated by running the proposed model on nearest-neighbor coupled network, Erdos-Renyi random graph network, Watts-Strogatz small-world network and Barabasi-Albert scale-free network respectively. New concepts in emergency recovery mechanism and the efficiency of networks are defined. And the effects of the parameters on the network efficiency and failure rate are investigated. Results demonstrate that the increase of the emergency recovery probability would reduce the network efficiency decreasing speed and the failure rate growing speed, and also improve the resilience of the network. And the greater the load capacity of the nodes in the network, the slower the speeds of network efficiency reducing and failure rate growing. Meanwhile, with the decrease of the overload node failure probability, the reducing speed of network efficiency and the growing speed of failure rate would reduce gradually. Furthermore, the changes of the network efficiency and failure rate during the process of cascading failures in different network topologies are analyzed. It is found that the rise of the heterogeneity of degree distribution increases the reducing speed of network efficiency and the growing speed of failure rate. All these results can help analyze the cascading dynamics in complex networks with an emergency recovery mechanism, and may provide a guidance for the controling of cascading failures and protecting against them in real-life complex networks.
    • 基金项目: 国家自然科学基金(批准号:60970135,61170282)、高等学校博士学科点专项科研基金(批准号:20120005110017)、国家教育部优秀青年教师基金(批准号:2013RC0312)和国家科技支撑计划(批准号:2012BAH06B02)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60970135, 61170282), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120005110017), the Science Foundation for the Excellent Youth Scholars of Ministry of Education of China (Grant No. 2013RC0312), and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAH06B02).
    [1]

    Wang J W, Rong L L 2009 Physica A 388 1289

    [2]
    [3]

    Heide D, Schafer M, Greiner M 2008 Phys. Rev. E 77 056103

    [4]
    [5]

    Bao Z J, Gao Y J, Ding L J, Wang G Z, Han Z X 2008 Physica A 387 5922

    [6]
    [7]
    [8]

    Simonsen I, Buzna L, Peters K, Bornholdt S, Helbing D 2008 Phys. Rev. Lett. 100 218701

    [9]

    Li P, Wang B H, Sun H, Gao P, Zhou T 2008 Eur. Phys. J. B 62 1

    [10]
    [11]

    Bao Z J, Cao Y J, Ding L J, Han Z X, Wang G Z 2008 Phys. Lett. A 372 5778

    [12]
    [13]

    Wang X F, Xu J 2004 Phys. Rev. E 70 056113

    [14]
    [15]

    Kinney R, Crucitti P, Albert R, Latora V 2005 Eur. Phys. J. B 46 101

    [16]
    [17]
    [18]

    Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104

    [19]
    [20]

    Zhao L, Park K, Lai Y C 2004 Phys. Rev. E 70 035101

    [21]

    Goh K I, Kahng B, Kim D 2002 Phys. Rev. Lett. 88 108701

    [22]
    [23]
    [24]

    Zhao L, Park K, Lai Y C, Ye N 2005 Phys. Rev. E 72 025104

    [25]
    [26]

    Wu J J, Gao Z Y, Sun H J 2007 Physica A 378 505

    [27]
    [28]

    Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102

    [29]

    Goh K I, Lee D S, Kahng B, Kim D 2003 Phys. Rev. Lett. 91 148701

    [30]
    [31]

    Moreno Y, Gomez J B, Pacheco A F 2002 Europhys. Lett. 58 630

    [32]
    [33]

    Wang W X, Chen G R 2008 Phys. Rev. E 77 026101

    [34]
    [35]

    Motter A E 2004 Phys. Rev. Lett. 93 098701

    [36]
    [37]

    Zhao H, Gao Z Y 2007 Eur. Phys. J. B 57 95

    [38]
    [39]

    Sun H J, Zhao H, Wu J J 2008 Physica A 387 6431

    [40]
    [41]

    Ash A, Newth D 2007 Physica A 380 673

    [42]
    [43]
    [44]

    Wang J W, Rong L L 2009 Physica A 388 1731

    [45]

    Latora V, Marchiori M 2001 Phys. Rev. Lett. 87 198701

    [46]
    [47]
    [48]

    Li Y, Lv L, Luan L 2009 Acta Phys. Sin. 58 4463 (in Chinese) [李岩, 吕翎, 栾玲 2009 物理学报 58 4463]

    [49]

    Xu Q X, Xu X J 2009 Chin. Phys. B 18 933

    [50]
    [51]
    [52]

    Li T, Pei W J, Wang S P 2009 Acta Phys. Sin. 58 5903 (in Chinese) [李涛, 裴文江, 王少平 2009 物理学报 58 5903]

    [53]
    [54]

    Chen H L, Liu Z X, Chen Z Q, Yuan Z Z 2009 Acta Phys. Sin. 58 6068 (in Chinese) [陈华良, 刘忠信, 陈增强, 袁著祉 2009 物理学报 58 6068]

    [55]

    Tian L, Di Z R, Yao H 2011 Acta Phys. Sin. 60 028901 (in Chinese) [田柳, 狄增如, 姚虹 2011 物理学报 60 028901]

    [56]
    [57]

    Wang J, Liu Y H, Zhu J Q, Jiao Y 2008 J Zhejiang Univ Sci A 9 101331

    [58]
    [59]

    Barabsi A L, Bonabeau E 2003 Scientific American 5 50

    [60]
    [61]

    Newman M E J 2003 SIAM Review 45 167

    [62]
    [63]

    Erdos P, Rnyi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

    [64]
    [65]
    [66]

    Watts D J, Strogatz S H 1998 Nature 393 409

    [67]

    Barabsi A L, Albert R 1999 Science 286 509

    [68]
    [69]

    Li Z, Xu G A, Ban X F, Zhang Y, Hu Z M 2013 Acta Phys. Sin. 62 200203 (in Chinese) [李钊, 徐国爱, 班晓芳, 张毅, 胡正名 2013 物理学报 62 200203]

    [70]
  • [1]

    Wang J W, Rong L L 2009 Physica A 388 1289

    [2]
    [3]

    Heide D, Schafer M, Greiner M 2008 Phys. Rev. E 77 056103

    [4]
    [5]

    Bao Z J, Gao Y J, Ding L J, Wang G Z, Han Z X 2008 Physica A 387 5922

    [6]
    [7]
    [8]

    Simonsen I, Buzna L, Peters K, Bornholdt S, Helbing D 2008 Phys. Rev. Lett. 100 218701

    [9]

    Li P, Wang B H, Sun H, Gao P, Zhou T 2008 Eur. Phys. J. B 62 1

    [10]
    [11]

    Bao Z J, Cao Y J, Ding L J, Han Z X, Wang G Z 2008 Phys. Lett. A 372 5778

    [12]
    [13]

    Wang X F, Xu J 2004 Phys. Rev. E 70 056113

    [14]
    [15]

    Kinney R, Crucitti P, Albert R, Latora V 2005 Eur. Phys. J. B 46 101

    [16]
    [17]
    [18]

    Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104

    [19]
    [20]

    Zhao L, Park K, Lai Y C 2004 Phys. Rev. E 70 035101

    [21]

    Goh K I, Kahng B, Kim D 2002 Phys. Rev. Lett. 88 108701

    [22]
    [23]
    [24]

    Zhao L, Park K, Lai Y C, Ye N 2005 Phys. Rev. E 72 025104

    [25]
    [26]

    Wu J J, Gao Z Y, Sun H J 2007 Physica A 378 505

    [27]
    [28]

    Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102

    [29]

    Goh K I, Lee D S, Kahng B, Kim D 2003 Phys. Rev. Lett. 91 148701

    [30]
    [31]

    Moreno Y, Gomez J B, Pacheco A F 2002 Europhys. Lett. 58 630

    [32]
    [33]

    Wang W X, Chen G R 2008 Phys. Rev. E 77 026101

    [34]
    [35]

    Motter A E 2004 Phys. Rev. Lett. 93 098701

    [36]
    [37]

    Zhao H, Gao Z Y 2007 Eur. Phys. J. B 57 95

    [38]
    [39]

    Sun H J, Zhao H, Wu J J 2008 Physica A 387 6431

    [40]
    [41]

    Ash A, Newth D 2007 Physica A 380 673

    [42]
    [43]
    [44]

    Wang J W, Rong L L 2009 Physica A 388 1731

    [45]

    Latora V, Marchiori M 2001 Phys. Rev. Lett. 87 198701

    [46]
    [47]
    [48]

    Li Y, Lv L, Luan L 2009 Acta Phys. Sin. 58 4463 (in Chinese) [李岩, 吕翎, 栾玲 2009 物理学报 58 4463]

    [49]

    Xu Q X, Xu X J 2009 Chin. Phys. B 18 933

    [50]
    [51]
    [52]

    Li T, Pei W J, Wang S P 2009 Acta Phys. Sin. 58 5903 (in Chinese) [李涛, 裴文江, 王少平 2009 物理学报 58 5903]

    [53]
    [54]

    Chen H L, Liu Z X, Chen Z Q, Yuan Z Z 2009 Acta Phys. Sin. 58 6068 (in Chinese) [陈华良, 刘忠信, 陈增强, 袁著祉 2009 物理学报 58 6068]

    [55]

    Tian L, Di Z R, Yao H 2011 Acta Phys. Sin. 60 028901 (in Chinese) [田柳, 狄增如, 姚虹 2011 物理学报 60 028901]

    [56]
    [57]

    Wang J, Liu Y H, Zhu J Q, Jiao Y 2008 J Zhejiang Univ Sci A 9 101331

    [58]
    [59]

    Barabsi A L, Bonabeau E 2003 Scientific American 5 50

    [60]
    [61]

    Newman M E J 2003 SIAM Review 45 167

    [62]
    [63]

    Erdos P, Rnyi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

    [64]
    [65]
    [66]

    Watts D J, Strogatz S H 1998 Nature 393 409

    [67]

    Barabsi A L, Albert R 1999 Science 286 509

    [68]
    [69]

    Li Z, Xu G A, Ban X F, Zhang Y, Hu Z M 2013 Acta Phys. Sin. 62 200203 (in Chinese) [李钊, 徐国爱, 班晓芳, 张毅, 胡正名 2013 物理学报 62 200203]

    [70]
  • [1] 蒋文君, 刘润然, 范天龙, 刘霜霜, 吕琳媛. 多层网络级联失效的预防和恢复策略概述. 物理学报, 2020, 69(8): 088904. doi: 10.7498/aps.69.20192000
    [2] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [3] 彭兴钊, 姚宏, 杜军, 王哲, 丁超. 负荷作用下相依网络中的级联故障. 物理学报, 2015, 64(4): 048901. doi: 10.7498/aps.64.048901
    [4] 欧阳博, 金心宇, 夏永祥, 蒋路茸, 吴端坡. 疾病传播与级联失效相互作用的研究:度不相关网络中疾病扩散条件的分析. 物理学报, 2014, 63(21): 218902. doi: 10.7498/aps.63.218902
    [5] 段东立, 战仁军. 基于相继故障信息的网络节点重要度演化机理分析. 物理学报, 2014, 63(6): 068902. doi: 10.7498/aps.63.068902
    [6] 袁铭. 带有层级结构的复杂网络级联失效模型. 物理学报, 2014, 63(22): 220501. doi: 10.7498/aps.63.220501
    [7] 李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠. 复杂网络时空混沌同步的Backstepping设计. 物理学报, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [8] 王辉, 韩江洪, 邓林, 程克勤. 基于移动社交网络的谣言传播动力学研究. 物理学报, 2013, 62(11): 110505. doi: 10.7498/aps.62.110505
    [9] 仇慎伟, 王开, 刘茜, 裴文江, 胡恒凯, 杨光, 蔚承建, 张毅锋. 基于交通流量的病毒扩散动力学研究. 物理学报, 2012, 61(15): 150201. doi: 10.7498/aps.61.150201
    [10] 熊熙, 胡勇. 基于社交网络的观点传播动力学研究. 物理学报, 2012, 61(15): 150509. doi: 10.7498/aps.61.150509
    [11] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析. 物理学报, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [12] 杨浦, 郑志刚. 基于动力学同步的复杂网络结构识别速度研究. 物理学报, 2012, 61(12): 120508. doi: 10.7498/aps.61.120508
    [13] 崔爱香, 傅彦, 尚明生, 陈端兵, 周涛. 复杂网络局部结构的涌现:共同邻居驱动网络演化. 物理学报, 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [14] 李树彬, 吴建军, 高自友, 林勇, 傅白白. 基于复杂网络的交通拥堵与传播动力学分析. 物理学报, 2011, 60(5): 050701. doi: 10.7498/aps.60.050701
    [15] 陈卫东, 徐华, 郭琦. 国际石油价格复杂网络的动力学拓扑性质. 物理学报, 2010, 59(7): 4514-4523. doi: 10.7498/aps.59.4514
    [16] 王丹, 于灏, 井元伟, 姜囡, 张嗣瀛. 基于感知流量算法的复杂网络拥塞问题研究. 物理学报, 2009, 58(10): 6802-6808. doi: 10.7498/aps.58.6802
    [17] 王建伟, 荣莉莉. 基于负荷局域择优重新分配原则的复杂网络上的相继故障. 物理学报, 2009, 58(6): 3714-3721. doi: 10.7498/aps.58.3714
    [18] 许 丹, 李 翔, 汪小帆. 复杂网络病毒传播的局域控制研究. 物理学报, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
    [19] 翁文国, 倪顺江, 申世飞, 袁宏永. 复杂网络上灾害蔓延动力学研究. 物理学报, 2007, 56(4): 1938-1943. doi: 10.7498/aps.56.1938
    [20] 李 季, 汪秉宏, 蒋品群, 周 涛, 王文旭. 节点数加速增长的复杂网络生长模型. 物理学报, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
计量
  • 文章访问数:  3805
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-02
  • 修回日期:  2014-04-09
  • 刊出日期:  2014-08-05

复杂网络中带有应急恢复机理的级联动力学分析

  • 1. 北京邮电大学信息安全中心; 北京邮电大学灾备技术国家工程实验室, 北京 100876
    基金项目: 国家自然科学基金(批准号:60970135,61170282)、高等学校博士学科点专项科研基金(批准号:20120005110017)、国家教育部优秀青年教师基金(批准号:2013RC0312)和国家科技支撑计划(批准号:2012BAH06B02)资助的课题.

摘要: 提出带有应急恢复机理的网络级联故障模型,研究模型在最近邻耦合网络,Erdos-Renyi随机网络,Watts-Strogatz小世界网络和Barabasi-Albert无标度网络四种网络拓扑下的网络级联动力学行为. 给出了应急恢复机理和网络效率的定义,并研究了模型中各参数对网络效率和网络节点故障率在级联故障过程中变化情况的影响. 结果表明,模型中应急恢复概率的增大减缓了网络效率的降低速度和节点故障率的增长速度,并且提高了网络的恢复能力. 而且网络中节点负载容量越大,网络效率降低速度和节点故障率的增长速度越慢. 同时,随着节点过载故障概率的减小,网络效率的降低速度和节点故障率的增长速度也逐渐减缓. 此外,对不同网络拓扑中网络效率和网络节点故障率在级联故障过程中的变化情况进行分析,结果发现网络拓扑节点度分布的异质化程度的增大,提高了级联故障所导致的网络效率的降低速度和网络节点故障率的增长速度. 以上结果分析了复杂网络中带有应急恢复机理的网络级联动力学行为,为实际网络中级联故障现象的控制和防范提供了参考.

English Abstract

参考文献 (70)

目录

    /

    返回文章
    返回