-
社交网络和微博是重要的Web2.0应用模式, 其观点传播模式与其他网络媒体以及传统媒体相比有很大差异. 本文提出一种基于在线社交网络的观点传播模型, 研究社交网络中舆论观点扩散的形式与特征. 仿真结果表明: 模型中信息传播的速度与六度分割理论的结论十分符合; 一个带强烈倾向性的观点在固有观点均匀分布的网络中传播的情况下, 稳定时网络中不会出现相反的观点; 稳定时的观点分布与源节点的度和回溯深度有关, 并不受信任界限的限制, 这与Deffuant模型和Hegselmann-Krause模型不同. 同时, 本文还分析了传播意愿、观点变更率和信任界限对弛豫时间的影响.Social network services and microblog are important application modes of Web2.0, in which opinion spread is quite different from that in other cyber-media and in traditional media. In this paper, we present an opinion-spreading model based on online social network services, to study the forms and features of the spread of public opinion in social network services. The simulation results show that the model can fit the actual data from a social network site. The speed of information spread is consistent with the conclusion of six degrees of separation theory. When an opinion with strong tendency spreads in a network in which intrinsic views obey uniform distribution, the opposite view cannot exist in the stable network. In a stable network, view distribution is related to the degree of source node and the depth of backtrack, but not related to confidence limit, which is different from Deffuant model and Hegselmann-Krause model. Meanwhile, in this paper, we the also analyze the influence of the probability of spreading will, the probability of opinion change and confidence limit on relaxation time. Finally, in the paper are shown two applications of the model: the spread of rumors and the role of opinion leaders.
-
Keywords:
- complex networks /
- social networking services /
- dynamics of opinion spread /
- limitary trust
[1] Watts D J, Strogatz S H 1998 Nature 393 440
[2] Barabasi A L, Albert R 1999 Science 286 509
[3] Albert R, Barabasi A L 2002 Phys. Rev. Mod. 74 47
[4] Erdos P, Renyi A 1959 Publ. Math. 6 290
[5] Kermack W O, Mckendrick A G 1927 Proc. Roy. Soc. A 115 700
[6] Kermack W O, Mckendrick A G 1932 Proc. Roy. oc. A 138 55
[7] Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200
[8] Sudbury A J 1985 Appl. Prob. 22 443
[9] Zhou J, Liu Z, Li B 2007 Phys. Lett. A 368 458
[10] Sznajd-Weron K, Sznajd J 2000 Int. J. Mod. Phys. C 11 1157
[11] Deffuant G, Amblard F, Weisbuch G, Faure T 2002 JASSS-The Journal of Artificia 5 1
[12] Hegselmann R, Krause U 2002 JASSS-The Journal of Artificia 5 2
[13] Hu H B, Wang X F 2009 Phys. Lett. A 37 1105
[14] www.facebook.com
[15] www.renren.com
[16] Zhang Y C, Liu Y, Zhang H F, Cheng H, Xiong F 2011 Acta Phys. Sin. 60 050501 (in Chinese) [张彦超, 刘云, 张海峰, 程辉, 熊菲 2011 物理学报 60 050501]
[17] Liu J 2004 An Introduction to Social Network Analysis (Beijing: Social Sciences Academic Press) p116 (in Chinese) [刘军 2004 社会网络分析导论 (北京: 社会科学文献出版社) 第116页]
[18] Sznajd W K 2005 Acta Phys. Polonica B 36 1001
-
[1] Watts D J, Strogatz S H 1998 Nature 393 440
[2] Barabasi A L, Albert R 1999 Science 286 509
[3] Albert R, Barabasi A L 2002 Phys. Rev. Mod. 74 47
[4] Erdos P, Renyi A 1959 Publ. Math. 6 290
[5] Kermack W O, Mckendrick A G 1927 Proc. Roy. Soc. A 115 700
[6] Kermack W O, Mckendrick A G 1932 Proc. Roy. oc. A 138 55
[7] Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200
[8] Sudbury A J 1985 Appl. Prob. 22 443
[9] Zhou J, Liu Z, Li B 2007 Phys. Lett. A 368 458
[10] Sznajd-Weron K, Sznajd J 2000 Int. J. Mod. Phys. C 11 1157
[11] Deffuant G, Amblard F, Weisbuch G, Faure T 2002 JASSS-The Journal of Artificia 5 1
[12] Hegselmann R, Krause U 2002 JASSS-The Journal of Artificia 5 2
[13] Hu H B, Wang X F 2009 Phys. Lett. A 37 1105
[14] www.facebook.com
[15] www.renren.com
[16] Zhang Y C, Liu Y, Zhang H F, Cheng H, Xiong F 2011 Acta Phys. Sin. 60 050501 (in Chinese) [张彦超, 刘云, 张海峰, 程辉, 熊菲 2011 物理学报 60 050501]
[17] Liu J 2004 An Introduction to Social Network Analysis (Beijing: Social Sciences Academic Press) p116 (in Chinese) [刘军 2004 社会网络分析导论 (北京: 社会科学文献出版社) 第116页]
[18] Sznajd W K 2005 Acta Phys. Polonica B 36 1001
计量
- 文章访问数: 10549
- PDF下载量: 5547
- 被引次数: 0