搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极化电压对聚丙烯压电驻极体膜压电性能的影响

张添乐 黄曦 郑凯 张欣梧 王宇杰 武丽明 张晓青 郑洁 朱彪

引用本文:
Citation:

极化电压对聚丙烯压电驻极体膜压电性能的影响

张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪

Influence of polarization voltage on piezoelectric performance of polypropylene piezoelectret films

Zhang Tian-Le, Huang Xi, Zheng Kai, Zhang Xin-Wu, Wang Yu-Jie, Wu Li-Ming, Zhang Xiao-Qing, Zheng Jie, Zhu Biao
PDF
导出引用
  • 压电驻极体是具有压电效应的微孔结构空间电荷驻极体材料,其压电性能与材料的微结构和空间电荷密切相关. 本文首先利用压缩气体膨化工艺对聚丙烯(PP)的微结构进行改性,然后利用接触极化方法,研究了极化电压与PP膜空间电荷密度之间的关系,及其对压电性能的影响. 结果表明对于极化前厚度为100 m的PP膜,其内部建立有序空间电荷分布的阈值极化电压为2 kV;一旦有序空间电荷建立起来,PP膜即具有压电效应. 随着极化电压的提高,PP膜的空间电荷密度逐步增大,压电效应显著增强. 当峰值电压为8 kV时,PP膜电极上的电荷密度、准静态压电系数和品质因数FOMv(d33 g33)分别为0.56 mC/m2,379 pC/N和8.6(GPa)-1. PP压电驻极体膜的FOMv 比聚偏氟乙烯(PVDF)铁电聚合物膜高2个量级以上,且声阻抗非常低(~ 0.025 MRayl),因此该压电膜在超声波发射-接收系统或脉冲-回波系统中具有明显的优势.
    Piezoelectrets are a kind of space-charged electret material with a void-structure. The piezoelectric effect in such a material is related with its microstructure and space charge. In this paper the micro-structure of polypropylene (PP) films is first modified by using a pressed gas expansion process to enhance the charging capability of the films, and then a direct contact charging is carried out to polarize the expanded films. The relationship between the applied voltage and the space charge density, and the influence of the applied voltage on the piezoelectric performance of PP films are investigated. Results show that for 100 m thick modified PP films, the critical voltage necessary for the build-up of the macro-dipoles in the inner voids is approximately 2 kV; once the macro-dipoles are built up, the PP films will exhibit piezoelectric effect. With increasing polarization voltage, the space charge density gradually increases, resulting in significant enhancement of piezoelectric effect. For the PP films polarized at a peak voltage of 8 kV, the space charge density, d33 coefficient, and the figure of merit FOMv(d33 g33) are 0.56 mC/m2, 379 pC/N and 8.6 GPa-1, respectively. Since not only the FOMv of the PP films is almost two orders of magnitude larger than that of PVDF, but also the acoustic impedance in such a material is very low (~ 0.025 MRayl), the PP films have an obvious advantage as applied in airborne ultrasonic transmit-receive or pulse-echo systems.
    • 基金项目: 国家自然科学基金(批准号:51173137和11374232)、中央高校基本科研(批准号:同济大学2012和2014)和2012国家大学生创新性实验计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51173137, 11374232), the fundamental Research Fund for the Central Universities, China (Grant Nos. Tongji University 2012, 2014), and the National Innovation Experiment Program for Undergraduate Students (2012).
    [1]
    [2]

    Lekkala J, Poramo R, Nyholm K, Kaikkonen T 1996 Med. Biol. Eng. Comput. 34 67

    [3]

    Bauer S, Gerhard-Multhaupt R, Sessler G M 2004 Phys. Today. 57(2) 37

    [4]
    [5]
    [6]

    Zhang X, Hillenbrand J, Sessler G M 2004 Appl. Phys. Lett. 85 1226

    [7]

    Zhang X W, Zhang X Q 2013 Acta. Phys. Sin. 62 167702 (in Chinese) [张欣梧, 张晓青 2013 物理学报 62 167702]

    [8]
    [9]
    [10]

    Anton S R, Farinholt K M 2012 Active and Passive Smart Structures and Integrated Systems edited by Sodano, Proc. of SPIE 8341 83410G

    [11]

    Zhang X Q, Huang J F, Wang F P, Xia Z F 2008 Acta. Phys. Sin. 57 0904 (in Chinese) [张晓青, 黄金峰, 王飞鹏, 夏钟福 2008 物理学报 57 0904]

    [12]
    [13]

    Zhang X, Hillenbrand J, Sessler G M, Haberzettl S, Lou K 2012 Appl. Phys. A 107 621

    [14]
    [15]

    You Q, Lou K, Zhang X, Zhang Y 2011 Proceedings of the 2011 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (IEEE Operations Center NJ USA) p395

    [16]
    [17]
    [18]

    Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R, Bauer S, Lacour S P, Wagner S 2006 Appl. Phys. Lett. 89 073501

    [19]
    [20]

    Hillenbrand J, Sessler G M 2004 J. Acoust. Soc. Am. 116 3267

    [21]
    [22]

    Kressmann R 2004 J. Acoust. Soc. Am. 109 1412

    [23]

    Zhang X, Hillenbrand J, Sessler G M 2004 J. Phys. D: Appl. Phys. 37 2146

    [24]
    [25]
    [26]

    Fan K, Ming Z, Xu C, Chao F 2013 Chin. Phys. B 22 104502

    [27]

    Guo D, Setter N 2013 Macromolecules 46 1883

    [28]
    [29]

    Mellinger A 2003 IEEE Trans. Dielectr. Electrl. Insul. 10 842

    [30]
    [31]

    Sessler G M, Hillenbrand J 1999 Appl Phys. Lett. 75 3405

    [32]
    [33]
    [34]

    Paajanen M, Välimäki H, Lekkala J 2000 J. Electrostatics 48 193

    [35]

    Sessler G M, Hillenbrand J 2013 Appl. Phys. Lett. 103 122904

  • [1]
    [2]

    Lekkala J, Poramo R, Nyholm K, Kaikkonen T 1996 Med. Biol. Eng. Comput. 34 67

    [3]

    Bauer S, Gerhard-Multhaupt R, Sessler G M 2004 Phys. Today. 57(2) 37

    [4]
    [5]
    [6]

    Zhang X, Hillenbrand J, Sessler G M 2004 Appl. Phys. Lett. 85 1226

    [7]

    Zhang X W, Zhang X Q 2013 Acta. Phys. Sin. 62 167702 (in Chinese) [张欣梧, 张晓青 2013 物理学报 62 167702]

    [8]
    [9]
    [10]

    Anton S R, Farinholt K M 2012 Active and Passive Smart Structures and Integrated Systems edited by Sodano, Proc. of SPIE 8341 83410G

    [11]

    Zhang X Q, Huang J F, Wang F P, Xia Z F 2008 Acta. Phys. Sin. 57 0904 (in Chinese) [张晓青, 黄金峰, 王飞鹏, 夏钟福 2008 物理学报 57 0904]

    [12]
    [13]

    Zhang X, Hillenbrand J, Sessler G M, Haberzettl S, Lou K 2012 Appl. Phys. A 107 621

    [14]
    [15]

    You Q, Lou K, Zhang X, Zhang Y 2011 Proceedings of the 2011 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (IEEE Operations Center NJ USA) p395

    [16]
    [17]
    [18]

    Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R, Bauer S, Lacour S P, Wagner S 2006 Appl. Phys. Lett. 89 073501

    [19]
    [20]

    Hillenbrand J, Sessler G M 2004 J. Acoust. Soc. Am. 116 3267

    [21]
    [22]

    Kressmann R 2004 J. Acoust. Soc. Am. 109 1412

    [23]

    Zhang X, Hillenbrand J, Sessler G M 2004 J. Phys. D: Appl. Phys. 37 2146

    [24]
    [25]
    [26]

    Fan K, Ming Z, Xu C, Chao F 2013 Chin. Phys. B 22 104502

    [27]

    Guo D, Setter N 2013 Macromolecules 46 1883

    [28]
    [29]

    Mellinger A 2003 IEEE Trans. Dielectr. Electrl. Insul. 10 842

    [30]
    [31]

    Sessler G M, Hillenbrand J 1999 Appl Phys. Lett. 75 3405

    [32]
    [33]
    [34]

    Paajanen M, Välimäki H, Lekkala J 2000 J. Electrostatics 48 193

    [35]

    Sessler G M, Hillenbrand J 2013 Appl. Phys. Lett. 103 122904

  • [1] 贾艳敏, 王晓星, 张祺昌, 武峥. 压-电-化学耦合增强策略及机理研究进展. 物理学报, 2023, 72(8): 087701. doi: 10.7498/aps.72.20222078
    [2] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [3] 王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣. 二维Janus原子晶体的电子性质. 物理学报, 2021, 70(2): 026801. doi: 10.7498/aps.70.20201406
    [4] 崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛. 小型低频发射天线的研究进展. 物理学报, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [5] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数. 物理学报, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [6] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [7] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者. 物理学报, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [8] 邓长发, 燕少安, 王冬, 彭金峰, 郑学军. 基于导电原子力显微镜的单根GaN纳米带光调控力电耦合性能. 物理学报, 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [9] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析. 物理学报, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [10] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究. 物理学报, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [11] 洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏. AgNbO3压电纳米材料压-电-化学耦合研究. 物理学报, 2018, 67(10): 107702. doi: 10.7498/aps.67.20180287
    [12] 周勇, 李纯健, 潘昱融. 磁致伸缩/压电层叠复合材料磁电效应分析. 物理学报, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [13] 刘向远, 钱仙妹, 张穗萌, 崔朝龙. 宏-微脉冲激光激发钠信标回波光子数的数值计算与探讨. 物理学报, 2015, 64(9): 094206. doi: 10.7498/aps.64.094206
    [14] 焦新泉, 陈家斌, 王晓丽, 薛晨阳, 任勇峰. 基于新型三环谐振器的诱导透明效应分析. 物理学报, 2015, 64(14): 144202. doi: 10.7498/aps.64.144202
    [15] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究. 物理学报, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [16] 宋顾周, 马继明, 王奎禄, 周鸣. 厚针孔射线成像品质因数的研究. 物理学报, 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [17] 丁燕红, 李明吉, 杨保和, 马叙. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性. 物理学报, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [18] 范军峰, 张 宁. Tb1-xDyxFe2-y-Fe掺杂BaTiO3多层膜中的磁电耦合. 物理学报, 2007, 56(10): 6056-6060. doi: 10.7498/aps.56.6056
    [19] 张鹏锋, 夏钟福, 邱勋林, 吴贤勇. 聚丙烯蜂窝膜驻极体压电系数的测量及压电性的改善. 物理学报, 2005, 54(1): 397-401. doi: 10.7498/aps.54.397
    [20] 陈钢进, 夏钟福. 多孔聚四氟乙烯/氟代乙烯丙烯共聚物复合驻极体材料的压电效应研究. 物理学报, 2004, 53(8): 2715-2719. doi: 10.7498/aps.53.2715
计量
  • 文章访问数:  5516
  • PDF下载量:  1447
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-07
  • 修回日期:  2014-04-10
  • 刊出日期:  2014-08-05

/

返回文章
返回