搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝宝石谐振体内的回音壁模电磁场分布

范思晨 杨帆 阮军

范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
引用本文: 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
Fan Si-Chen, Yang Fan, Ruan Jun. Eelectromagnetic field distribution of whispering gallery mode in a sapphire resonator. Acta Phys. Sin., 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
Citation: Fan Si-Chen, Yang Fan, Ruan Jun. Eelectromagnetic field distribution of whispering gallery mode in a sapphire resonator. Acta Phys. Sin., 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156

蓝宝石谐振体内的回音壁模电磁场分布

范思晨, 杨帆, 阮军

Eelectromagnetic field distribution of whispering gallery mode in a sapphire resonator

Fan Si-Chen, Yang Fan, Ruan Jun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 蓝宝石谐振体内的电磁场为回音壁模式时具有极低的介质损耗. 本文采用径向-轴向模式匹配法, 理论分析了蓝宝石谐振体内的场模式分布, 分析了谐振频率与谐振体几何尺寸的关系; 其次, 基于有限元分析仿真了蓝宝石圆柱体内场分布情况; 研制了三维转动位移台, 采用磁环/探针耦合的方式激发蓝宝石谐振体内的回音壁电磁场, 测量了谐振体表面的S参数, 由此确定了谐振体内的回音壁模式参数, 得到谐振器的无载Q值为94000. 利用该谐振体可制成低相位噪声的微波振荡器.
    When the electromagnetic field in the sapphire resonator corresponds to the whispering gallery mode, it exhibits an extremely low dielectric loss. As result, sapphire oscillator has the characteristics of ultra-low phase noise and high short-term frequency stability. The distribution of electromagnetic field in the sapphire resonator is very important for realizing high-level oscillator. In this work, the radial-axial mode matching method is used to theoretically analyze the distribution of the field mode in the sapphire resonator, and the resonant frequency of the WGHm,0,0 mode is calculated. The field distribution of the sapphire resonator is simulated by the finite element analysis method. The gallery mode number of the sapphire resonator is studied and the electromagnetic field intensity distribution of the WGH15,0,0 mode in the azimuthal, axial and radial direction are obtained. Finally, a home-made gallery mode analyzer is used to measure the microwave field on the surface of sapphire resonator, which is composed of a three-dimensional rotating stage , the magnetic ring/probe coupling and a vector network analyzer. With the above theoretical analysis, the finite element analysis method and the experimental measurement, the working mode of the sapphire resonator and the resonant frequency of the WGHm,0,0 mode are determined. When the sapphire resonator works in WGH15,0,0 mode, the resonant frequency is 9.891 GHz, and the parameters of the whispering gallery mode in the resonator are obtained, and the unloaded Q value of the resonator is 94000. When the temperature is 292 K, the frequency-temperature sensitivity of the sapphire resonator working in the WGHm,0,0 whispering gallery mode is about 71.64×106. The microwave oscillator consisting of the high Q sapphire resonator can be used to make an oscillator with ultra-low phase noise and high frequency stability.
      PACS:
      41.20.Jb(Electromagnetic wave propagation; radiowave propagation)
      06.30.Ft(Time and frequency)
      通信作者: 阮军, ruanjun@ntsc.ac.cn
    • 基金项目: 中国科学院西部青年学者项目(批准号: XAB2018 A06)和中国科学院重大科技基础设施维修改造项目(批准号: DSS-WXGZ-2020-0005)资助的课题.
      Corresponding author: Ruan Jun, ruanjun@ntsc.ac.cn
    • Funds: Project supported by the Foundation for Western Young Scholars, Chinese Academy of Sciences (Grant No. XAB2018A06) and the Large Research Infrastructures Improvement Funds of Chinese Academy of Sciences (Grant No. DSS-WXGZ-2020-0005)

    蓝宝石谐振体内的电磁场为回音壁模式时具有极低的介质损耗[1], 由此制成的振荡器具有超低相位噪声和较高中短期频率稳定度等特性[2,3], 在原子频率标准[4-7]、暗物质探测[8,9]、量子计算[10,11]、甚长基线干涉仪[12,13]和深空探测[14,15]等领域有重要应用. 蓝宝石谐振体内的电磁场模式与振荡器品质因子Q存在确定的函数关系[16,17], 直接影响着振荡器的相位噪声, 因此确定蓝宝石谐振体内的电磁场分布是实现高性能振荡器的先决条件. 由于回音壁模式的电磁场绝大部分分布在蓝宝石内部, 并不能直接利用探针测量其分布, 一般多采用模式匹配法[18-21], 计算特定模式的谐振频率和蓝宝石内部的电磁场分布, 或者应用软件仿真方法来确定电磁场分布, 很少进行实验验证.

    本文设计并研制了装配双端磁环/探针的精密转动位移台, 激励产生了蓝宝石谐振体内的回音壁模式电磁场, 同时获得了蓝宝石谐振体外的电磁场分布, 通过与模式匹配法理论计算和微波软件仿真结果进行比较, 从而确定了蓝宝石谐振体内的回音壁模式电磁场参数.

    蓝宝石是各向异性的单晶体材料, 对于圆柱形蓝宝石, 它的晶轴(C轴)与z轴平行, 平行于晶轴方向的相对介电常数为ε//, 垂直于晶轴方向的相对介电常数为εrεθ. 实验中蓝宝石尺寸为直径54.21 mm, 高30.00 mm, 蓝宝石柱体的一端有一个直径10.00 mm, 高22.00 mm的小圆柱体用于将蓝宝石固定在腔内. 在292 K时, 蓝宝石的相对介电常数ε=9.39,ε//=11.576.

    介质谐振体理论分析方法有介质波导法[22]、径向模式匹配法[23]、轴向模式匹配法[24], 本文采用Tabor和Mann [19]提出的径向与轴向结合的模式匹配方法.

    径向匹配得到以下超越方程[25]:

    (εrJm(xE)xEx2HJm(xE)+Km(y)yKm(y))(Jm(xH)xHJm(xH)+Km(y)yKm(y))=m2(x2H+εry2)(x2H+y2)x4Hy4
    (1)

    在这里,

    xE=kEd2,xH=kHd2,y=koutd2,k2E=εzk20β2εzεr,k2H=εrk20β2,k2out=β2k20,

    其中, Jmm阶第一类贝塞尔函数, Kmm阶第二类修正贝塞尔函数, kE是平行于c轴的介质传播常数, kH是垂直于c轴的介质传播常数, β是轴向传播常数, kout是外径向传播常数, k0是自由空间波数.

    轴向匹配可以得到:

    (β2+(εr1)k20εrcos(βz)+βsin(βz))×(β2+(εr1)k20sin(βz)+βcos(βz))=0
    (2)

    利用上述两个方程即可求得蓝宝石谐振体工作在回音壁模式的谐振频率.

    有限元方法可以仿真蓝宝石谐振体内的电磁场分布情况[26-28]. 利用三维电磁场仿真软件CST Studio Suite建立仿真模型, 使用本征模求解器仿真蓝宝石晶体工作在回音壁模式下的场分布, 仿真模型如图1(a)所示. 分别对蓝宝石谐振体和空气区域进行不同的网格剖分, 求解数值精度为10–9, 迭代次数为6. 当蓝宝石介质工作在WGH15,0,0模式时, 电磁场的能量密度分布如图1(b)图1(c)所示. 图1(b)中, 圆柱体为蓝宝石柱, 外部为空气, 电磁能量被限制在蓝宝石晶体边界靠近空气的地方, 在方位角上呈现花瓣形状, 具有周期性.

    图 1 WGH15,0,0模式仿真 (a) 有限元模型网格填充剖面图; (b)电场方位角向分布; (c) 磁场径向分布\r\nFig. 1. WGH15,0,0: (a) Mesh filling section of finite element model; (b) azimuth distribution of electric field; (c) radial distribution of the magnetic field.
    图 1  WGH15,0,0模式仿真 (a) 有限元模型网格填充剖面图; (b)电场方位角向分布; (c) 磁场径向分布
    Fig. 1.  WGH15,0,0: (a) Mesh filling section of finite element model; (b) azimuth distribution of electric field; (c) radial distribution of the magnetic field.

    通过近场探测的方法确定蓝宝石柱腔内的微波模式场分布, 测试装置如图2所示.

    图 2 测量WGH模式共振频率装置示意图\r\nFig. 2. Schematic diagram of measuring WGH mode resonance frequency device.
    图 2  测量WGH模式共振频率装置示意图
    Fig. 2.  Schematic diagram of measuring WGH mode resonance frequency device.

    矢量网络分析仪作为微波产生和探测的装置, 使用主动型氢钟作为其时钟参考. 矢量网络分析仪端口1发射的微波通过固定的磁环耦合进样品, 在内部和表面形成回音壁模式的谐振器电磁场. 用磁环或探针对样品表面电磁场进行探测, 磁环和探针天线通过精密位移台(分辨率0.01 mm)和转动台(分辨率0.01°)固定, 接收端可沿轴向(z)、径向(ρ)和方位角(θ)方向调节. 可移动的磁环或天线连接到矢量网络分析仪端口2作为微波接收端, 测量S参数随空间的变化情况. 调节臂2的轴向高度, 可以确定WGH模式轴向数; 将臂3探针沿径向移动, 可以确定径向数; 将臂2绕蓝宝石样品旋转, 观测S21变化的周期性变化, 可以确定方位角数.

    利用上述测量装置对WGH15,0,0模近场进行测量, 并与有限元仿真电磁场强度绝对值进行对比, 如图3所示, 其中黑线表示有限元仿真法电磁场强度绝对值, 红线表示实验测量S21值. 图3(a)表示磁场强度方位角向分布, 磁环绕方位角方向S21测量值和有限元法的磁场强度绝对值变化趋势基本符合, 在方位角上电磁场强度具有周期性, 每12°为一个周期, 故m=15. 图3(b)表示磁场强度轴向分布, 磁环位置在轴向上高度变化激励的S21值与有限元法的磁场强度绝对值较一致, 在轴向上p=0. 图3(c)表示电场强度径向分布, 探针位置在径向上变化激励的S21值与有限元法的电场强度绝对值趋势一致, 在径向上电场强度具有对称性, n=0.

    图 3 WGH15,0,0模式电磁场强度 (a) 磁场强度方位角向分布; (b) 磁场强度轴向分布; (c)电场强度径向分布\r\nFig. 3. Electromagnetic field intensity of WGH15,0,0: (a) Cross-section distribution of magnetic field intensity; (b) axial cross-section distribution of magnetic field intensity; (c) cross-section distribution of electric field intensity diameter.
    图 3  WGH15,0,0模式电磁场强度 (a) 磁场强度方位角向分布; (b) 磁场强度轴向分布; (c)电场强度径向分布
    Fig. 3.  Electromagnetic field intensity of WGH15,0,0: (a) Cross-section distribution of magnetic field intensity; (b) axial cross-section distribution of magnetic field intensity; (c) cross-section distribution of electric field intensity diameter.

    实验中, 采用磁耦合方式激发和探测. 图4中, 红线为通过模式匹配法计算出的WGHm,0,0模式谐振频率, 蓝线为有限元分析法得到的WGHm,0,0模式谐振频率, 绿线为实验测得的WGHm,0,0模式谐振频率. 理论计算、有限元法仿真和实际测量得到的频率值基本符合.

    图 4 WGHm, 0, 0模式理论频率和测量频率的比较\r\nFig. 4. Comparison of theoretical and measured frequencies of WGHm, 0, 0 models.
    图 4  WGHm, 0, 0模式理论频率和测量频率的比较
    Fig. 4.  Comparison of theoretical and measured frequencies of WGHm, 0, 0 models.

    WGHm,0,0模式测量的谐振频率与方位角模式数呈线性关系, 与理论计算值和有限元分析结果一致. 表1给出理论计算、有限元仿真和实验测量得到的谐振频率, 并且计算得到精度. 分析可得, 有限元仿真得到的精度Δf/f<0.06%, 实验测量结果得到的精度Δf/f<0.02%.

    表 1  m = 10—19的谐振频率
    Table 1.  Resonant frequency of m = 10–19.
    回音壁模式f/GHzΔf-/fΔf-/f
    理论计算有限元法实验测量
    WGH10, 0,07.066867.070637.071810.053%0.070%
    WGH11,0,07.635217.637847.639250.035%0.053%
    WGH12,0,08.201608.203558.204430.024%0.035%
    WGH13,0,08.766138.767458.767610.015%0.017%
    WGH14,0,09.329059.330309.329830.013%0.008%
    WGH15,0,09.890519.890119.89062–0.004%0.001%
    WGH16,0,010.4505410.4539010.450080.032%–0.004%
    WGH17,0,011.0093311.0155011.008630.056%–0.006%
    WGH18,0,011.5669411.5694011.565930.022%–0.009%
    WGH19,0,012.1234512.1210012.12218–0.020%–0.010%
    下载: 导出CSV 
    | 显示表格

    图5中, 测量带宽为300 MHz, 激发探头和探测磁环之间的夹角为180°. WGH15,0,0附近存在多个杂散模, 在形成振荡环路时, 容易跳频. 图3中, WGH15,0,0在方位角方向上存在周期性, 当激发磁环和探测磁环之间的夹角为180°时, 所有模态都被激发. 改变可移动磁环在方位角方向上的位置, 将其固定在WGH15,0,0最大场位置, 此时磁环沿谐振体轴旋转180m=15=12, 激发磁环和探测磁环之间的夹角为168°, WGH15,0,0模式不受影响, 且杂散模式被有效抑制, 测试结果如图5中绿线所示.

    图 5 室温下WGH15,0,0模式磁环不同位置的S21参数\r\nFig. 5. S21 at different positions of WGH15,0,0 mode magnetic rings in samples at room temperature.
    图 5  室温下WGH15,0,0模式磁环不同位置的S21参数
    Fig. 5.  S21 at different positions of WGH15,0,0 mode magnetic rings in samples at room temperature.

    当激发磁环和探测磁环之间的夹角为168°时, 利用矢量网络分析仪ZVB14对蓝宝石谐振体的S参数进行测量, 结果如图6所示, 测量带宽为2 MHz. 红线为S12, 绿线为S21, 其中f0=9891754142Hz,Δf=124041Hz, 根据QL=f0Δf可得, QL8×104, 故Q0=QL1S219.4×104.

    图 6 室温下样品的WGH15,0,0模式S参数\r\nFig. 6. WGH15,0,0 mode S parameters of samples at room temperature.
    图 6  室温下样品的WGH15,0,0模式S参数
    Fig. 6.  WGH15,0,0 mode S parameters of samples at room temperature.

    温度是影响蓝宝石谐振体的谐振频率的主要因素. 其频率-温度敏感度(TCF)[29]如下:

    1ffT=12peαε12pe//αε//pDαDpLαL
    (3)

    式中,

    pe=2|fε|εf,pe//=2|fε//|ε//f,pD=fDDf,pL=fLLf,αε=1εεT,αε//=1ε//ε//T,
    αD=1DDT,αL=1LLT,

    pepe//分别为垂直于晶轴方向和平行于晶轴方向的电场填充因子, pDpL分别为回音壁模式谐振频率对蓝宝石柱直径和高度变化的敏感度, αεαε//分别为垂直于晶轴方向和平行于晶轴方向的介电常数温度系数, αDαL分别为垂直于晶轴方向和平行于晶轴方向的热膨胀系数.

    分别加入微扰ΔDΔL, 通过模式匹配法和有限元分析法分别求得此时的Δf. 图7给出蓝宝石谐振体直径(D)和高度(L)变化对回音壁模式WGH15,0,0谐振频率的影响. 改变蓝宝石柱直径D (mm)得到谐振频率随直径的变化关系, 根据pD=fDDf可得, pD0.973. 保持蓝宝石柱直径不变, 改变高度H (mm)得到谐振频率随高度的变化关系, 根据pL=fLLf可得, pL0.027. 可以看出谐振频率随直径变化的敏感度大于随高度变化的敏感度.

    图 7 WGH15,0,0谐振频率与样品尺寸关系 (a) 谐振频率与直径变化的关系; (b) 谐振频率与高度变化的关系\r\nFig. 7. Relationship between resonant frequency and sample size: (a) Relation between resonant frequency and diameter change; (b) relation between resonant frequency and height variation.
    图 7  WGH15,0,0谐振频率与样品尺寸关系 (a) 谐振频率与直径变化的关系; (b) 谐振频率与高度变化的关系
    Fig. 7.  Relationship between resonant frequency and sample size: (a) Relation between resonant frequency and diameter change; (b) relation between resonant frequency and height variation.

    分别加入微扰ΔεΔε//, 通过模式匹配法和有限元分析法分别求得此时的Δf. 图8给出了蓝宝石回音壁模式WGH15,0,0谐振频率与相对介电常数的关系. 改变蓝宝石垂直于晶轴的相对介电常数得到谐振频率随ε的变化关系, 根据pe=2|fε|εf可得, pe0.032. 保持蓝宝石垂直于晶轴的相对介电常数不变, 改变平行于晶轴的相对介电常数, 得到谐振频率随ε//的变化关系, 根据pe//=2|fε//|ε//f可得, pe//0.96. 谐振频率随平行于晶轴的相对介电常数变化的敏感度大于随垂直于晶轴的相对介电常数变化的敏感度.

    图 8 WGH15,0,0谐振频率与相对介电常数的关系 (a) 谐振频率与${\varepsilon }_{\perp } $的关系; (b) 谐振频率与${\varepsilon }_{// }$的关系\r\nFig. 8. Relation between resonant frequency and relative permittivity: (a) Relation between resonant frequency and $ {\varepsilon }_{\perp } $; (b) relation between resonant frequency and ${\varepsilon }_{//}$.
    图 8  WGH15,0,0谐振频率与相对介电常数的关系 (a) 谐振频率与ε的关系; (b) 谐振频率与ε//的关系
    Fig. 8.  Relation between resonant frequency and relative permittivity: (a) Relation between resonant frequency and ε; (b) relation between resonant frequency and ε//.

    对于WGH15,0,0模, TCF近似为

    1ffT=12αε//αD
    (4)

    结果表明, 蓝宝石谐振体工作在WGH15,0,0回音壁模式的频率-温度敏感度主要与平行于晶轴方向的介电常数温度系数和垂直于晶轴方向的热膨胀系数有关.

    图9给出垂直于晶轴的介电常数和平行于晶轴的介电常数与温度的关系 [30]. 在低温下, 介电常数对温度的敏感度小, 随温度的变化趋势较缓慢; 当温度升高到一定值时, 介电常数对温度的敏感度逐渐增大, 随温度的变化趋势较快. 图9中蓝线表示当温度为292 K时加入微扰ΔT, 分别求得此时的ΔεΔε//. 改变温度得到介电常数随温度的变化关系. 根据 αε=1εεT 可得, αε91.07×106 K1. 根据 αε//=1ε//ε//T 可得, αε//133.03×106 K1.

    图 9 温度对相对介电常数的影响 (a)$ {\varepsilon }_{\perp } $与温度的关系; (b)${\varepsilon }_{// }$与温度的关系\r\nFig. 9. Influence of temperature and relative permittivity: (a) Relationship between ${\varepsilon }_{\perp } $ and temperature; (b) relationship between ${\varepsilon }_{// }$ and temperature.
    图 9  温度对相对介电常数的影响 (a)ε与温度的关系; (b)ε//与温度的关系
    Fig. 9.  Influence of temperature and relative permittivity: (a) Relationship between ε and temperature; (b) relationship between ε// and temperature.

    图10给出垂直于晶轴的热膨胀系数和平行于晶轴的热膨胀系数与温度的关系[31]. 图中蓝线表示在温度为20—350 K时, 垂直于晶轴的热膨胀系数和平行于晶轴的热膨胀系数与温度关系的拟合曲线:

    图 10 温度对热膨胀系数的影响 (a)$ {\alpha }_{D} $与温度的关系; (b)$ {\alpha }_{L} $与温度的关系\r\nFig. 10. Influence of temperature and thermal coefficient of expansion: (a) Relationship between $ {\alpha }_{D} $ and temperature; (b) relationship between $ {\alpha }_{L} $ and temperature.
    图 10  温度对热膨胀系数的影响 (a)αD与温度的关系; (b)αL与温度的关系
    Fig. 10.  Influence of temperature and thermal coefficient of expansion: (a) Relationship between αD and temperature; (b) relationship between αL and temperature.
    αD=0.014230.006T+1.65848×104T22.92527×107T3,αL=0.102690.00306T+1.78122×104T23.32844×107T3
    (5)

    当温度是292 K时, 根据(5)式可得, αD=5.12×106,αL=5.90×106. 比较可知, 介电常数温度系数对温度的敏感度比热膨胀系数约大10倍, 因此, 蓝宝石谐振体工作在WGH回音壁模式时, 频率-温度敏感度主要与平行于晶轴方向的介电常数温度系数有关. 根据(4)式可得, 当温度为292 K时, 蓝宝石谐振体工作在WGH回音壁模式的频率-温度敏感度约为71.64×106. 因此, 为了使蓝宝石谐振体有较高的中短期频率稳定度, 需要采用精密的温控技术或者对频率-温度敏感度进行补偿.

    本文以蓝宝石谐振体为基础, 通过理论分析和模拟仿真, 对蓝宝石谐振体工作在WGH15,0,0模式下的尺寸、结构进行了优化设计. 理论计算了蓝宝石谐振体高度和直径以及相对介电常数对谐振频率的影响. 通过对蓝宝石谐振体进行耦合测试与调节, 最终实现了蓝宝石谐振体的谐振频率为9.891 GHz, 无载Q值为94000, 由此可制成具有低相位噪声特性的微波振荡器.

    [1]

    Tobar M E, Krupka J, Ivanov E N, Woode R A 1997 J. Phys. D: Appl. Phys. 30 2770Google Scholar

    [2]

    Hartnett J G, Nand N R, Lu C 2012 Appl. Phys. Lett. 100 183501Google Scholar

    [3]

    Calosso C E, Vernotte F, Giordano V, Fluhr C, Dubois B, Rubiola E 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 616Google Scholar

    [4]

    Santarelli G, Laurent Ph, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619Google Scholar

    [5]

    Takamizawa A, Yanagimachi S, Hagimoto K 2022 Metrologia 59 035004Google Scholar

    [6]

    王倩, 魏荣, 王育竹 2018 物理学报 67 163202Google Scholar

    Wang Q, Wei R, Wang Y Z 2018 Acta Phys. Sin. 67 163202Google Scholar

    [7]

    Guena J, Abgrall M, Clairon A, Bize S 2014 Metro. 51 108Google Scholar

    [8]

    Thomson C A, McAllister B T, Goryachev M, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 081803Google Scholar

    [9]

    Campbell W M, McAllister B T, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 071301Google Scholar

    [10]

    Ball H, Oliver W D, Biercuk M J 2016 npj Quantum Inf. 2 1Google Scholar

    [11]

    Sepiol M A, Hughes A C, Tarlton J E, Nadlinger D P, Balance T G, Balance C J, Harty T P, Steane A M, Goodwin J F, Lucas D M 2019 Phys. Rev. Lett. 123 110503Google Scholar

    [12]

    Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microwave Theory Tech. 59 2978Google Scholar

    [13]

    Doeleman S, Mai T, Rogers A E E, Hartnett J G, Tobar M E, Nand N 2011 PASP 123 582Google Scholar

    [14]

    Giordano V, Grop S, Dubois B, Bourgeois P Y, Kersalé Y, Haye G, Dolgovskiy V, Bucalovic N, Domenico G D, Schilt S, Chauvin J, Valat D, Rubiola E 2012 Rev. Sci. Instrum. 83 085113Google Scholar

    [15]

    Grop S, Giordano V, Bourgeois P Y, Bazin N, Kersale Y, Oxborrow M, Marra G, Langham C, Rubiola E, DeVincente J 2009 IEEE International Frequency Control Symp. Joint with the 22 nd European Frequency and Time Forum 376Google Scholar

    [16]

    Le Floch J M, Fan Y, Humbert G, Shan Q X, Férachou D, Bara-Maillet R, Aubourg M, Hartnett J G, Madrangeas V, Cros D, Blondy J M, Krupka, Tobar M E 2014 Rev. Sci. Instrum. 85 031301Google Scholar

    [17]

    Le Floch J M, Murphy C, Hartnett J G, Madrangeas V, Krupka J, Cros D, Tobar M E 2017 J. Appl. Phys. 121 014102Google Scholar

    [18]

    Krupka J, Derzakowski K, Abramowicz A, Tobar M E 1999 IEEE Trans. Microwave Theory Tech. 47 752Google Scholar

    [19]

    Tobar M E, Mann A G 1991 IEEE Trans. Microwave Theory Tech. 39 2077Google Scholar

    [20]

    Di Monaco O 1997 Ph. D. Dissertation (Besançon: Université de Franche Comté)

    [21]

    Liang X P, Zaki K A 1993 IEEE Trans. Microwave Theory Tech. 41 2174Google Scholar

    [22]

    Rayleigh L 1910 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 20 1001Google Scholar

    [23]

    Kobayashi Y, Tanaka S 1980 IEEE Trans. Microwave Theory Tech. 28 1077Google Scholar

    [24]

    Zaki K A, Atia A E 1983 IEEE Trans. Microwave Theory Tech. 31 1039Google Scholar

    [25]

    Peng H, Blair D G 1994 Proceedings of IEEE 48th Annual Symposium on Frequency Control 459

    [26]

    Aubourg M, Guillon P 1991 JEWA 5 371Google Scholar

    [27]

    Strang G, Fix G J, Griffin D S 1974 J. Appl. Mech. 41 62Google Scholar

    [28]

    Jin J M 2002 The Finite Element Method in Electromagnetics (2nd Ed. ) (NewYork: Wiley-IEEE Press)

    [29]

    Tobar M E, Krupka J, Ivanov E N, Woode R A 1996 IEEE International Frequency Control Symp. 799

    [30]

    Shelby R, Fontanella J, Andeen C 1980 J. Phys. Chem. Solids 41 69Google Scholar

    [31]

    White G K 1993 Thermochim. Acta 218 83Google Scholar

    期刊类型引用(2)

    1. 刘盈,熊宜松,李月,李鑫,曾成,宁俊松,补世荣,王占平,张晓雨,刘绍阳,郭婉婷. X波段低相噪蓝宝石振荡器. 强激光与粒子束. 2024(03): 23-27 . 百度学术
    2. 苗俊田,刘冬冬,李卓军,赵博,鹿德台. 基于双正交样条小波的输油管道焊接缺陷漏磁信号识别技术. 现代电子技术. 2023(21): 55-58 . 百度学术

    其他类型引用(0)

  • 图 1  WGH15,0,0模式仿真 (a) 有限元模型网格填充剖面图; (b)电场方位角向分布; (c) 磁场径向分布

    Fig. 1.  WGH15,0,0: (a) Mesh filling section of finite element model; (b) azimuth distribution of electric field; (c) radial distribution of the magnetic field.

    图 2  测量WGH模式共振频率装置示意图

    Fig. 2.  Schematic diagram of measuring WGH mode resonance frequency device.

    图 3  WGH15,0,0模式电磁场强度 (a) 磁场强度方位角向分布; (b) 磁场强度轴向分布; (c)电场强度径向分布

    Fig. 3.  Electromagnetic field intensity of WGH15,0,0: (a) Cross-section distribution of magnetic field intensity; (b) axial cross-section distribution of magnetic field intensity; (c) cross-section distribution of electric field intensity diameter.

    图 4  WGHm, 0, 0模式理论频率和测量频率的比较

    Fig. 4.  Comparison of theoretical and measured frequencies of WGHm, 0, 0 models.

    图 5  室温下WGH15,0,0模式磁环不同位置的S21参数

    Fig. 5.  S21 at different positions of WGH15,0,0 mode magnetic rings in samples at room temperature.

    图 6  室温下样品的WGH15,0,0模式S参数

    Fig. 6.  WGH15,0,0 mode S parameters of samples at room temperature.

    图 7  WGH15,0,0谐振频率与样品尺寸关系 (a) 谐振频率与直径变化的关系; (b) 谐振频率与高度变化的关系

    Fig. 7.  Relationship between resonant frequency and sample size: (a) Relation between resonant frequency and diameter change; (b) relation between resonant frequency and height variation.

    图 8  WGH15,0,0谐振频率与相对介电常数的关系 (a) 谐振频率与ε的关系; (b) 谐振频率与ε//的关系

    Fig. 8.  Relation between resonant frequency and relative permittivity: (a) Relation between resonant frequency and ε; (b) relation between resonant frequency and ε//.

    图 9  温度对相对介电常数的影响 (a)ε与温度的关系; (b)ε//与温度的关系

    Fig. 9.  Influence of temperature and relative permittivity: (a) Relationship between ε and temperature; (b) relationship between ε// and temperature.

    图 10  温度对热膨胀系数的影响 (a)αD与温度的关系; (b)αL与温度的关系

    Fig. 10.  Influence of temperature and thermal coefficient of expansion: (a) Relationship between αD and temperature; (b) relationship between αL and temperature.

    表 1  m = 10—19的谐振频率

    Table 1.  Resonant frequency of m = 10–19.

    回音壁模式f/GHzΔf-/fΔf-/f
    理论计算有限元法实验测量
    WGH10, 0,07.066867.070637.071810.053%0.070%
    WGH11,0,07.635217.637847.639250.035%0.053%
    WGH12,0,08.201608.203558.204430.024%0.035%
    WGH13,0,08.766138.767458.767610.015%0.017%
    WGH14,0,09.329059.330309.329830.013%0.008%
    WGH15,0,09.890519.890119.89062–0.004%0.001%
    WGH16,0,010.4505410.4539010.450080.032%–0.004%
    WGH17,0,011.0093311.0155011.008630.056%–0.006%
    WGH18,0,011.5669411.5694011.565930.022%–0.009%
    WGH19,0,012.1234512.1210012.12218–0.020%–0.010%
    下载: 导出CSV
  • [1]

    Tobar M E, Krupka J, Ivanov E N, Woode R A 1997 J. Phys. D: Appl. Phys. 30 2770Google Scholar

    [2]

    Hartnett J G, Nand N R, Lu C 2012 Appl. Phys. Lett. 100 183501Google Scholar

    [3]

    Calosso C E, Vernotte F, Giordano V, Fluhr C, Dubois B, Rubiola E 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 616Google Scholar

    [4]

    Santarelli G, Laurent Ph, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619Google Scholar

    [5]

    Takamizawa A, Yanagimachi S, Hagimoto K 2022 Metrologia 59 035004Google Scholar

    [6]

    王倩, 魏荣, 王育竹 2018 物理学报 67 163202Google Scholar

    Wang Q, Wei R, Wang Y Z 2018 Acta Phys. Sin. 67 163202Google Scholar

    [7]

    Guena J, Abgrall M, Clairon A, Bize S 2014 Metro. 51 108Google Scholar

    [8]

    Thomson C A, McAllister B T, Goryachev M, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 081803Google Scholar

    [9]

    Campbell W M, McAllister B T, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 071301Google Scholar

    [10]

    Ball H, Oliver W D, Biercuk M J 2016 npj Quantum Inf. 2 1Google Scholar

    [11]

    Sepiol M A, Hughes A C, Tarlton J E, Nadlinger D P, Balance T G, Balance C J, Harty T P, Steane A M, Goodwin J F, Lucas D M 2019 Phys. Rev. Lett. 123 110503Google Scholar

    [12]

    Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microwave Theory Tech. 59 2978Google Scholar

    [13]

    Doeleman S, Mai T, Rogers A E E, Hartnett J G, Tobar M E, Nand N 2011 PASP 123 582Google Scholar

    [14]

    Giordano V, Grop S, Dubois B, Bourgeois P Y, Kersalé Y, Haye G, Dolgovskiy V, Bucalovic N, Domenico G D, Schilt S, Chauvin J, Valat D, Rubiola E 2012 Rev. Sci. Instrum. 83 085113Google Scholar

    [15]

    Grop S, Giordano V, Bourgeois P Y, Bazin N, Kersale Y, Oxborrow M, Marra G, Langham C, Rubiola E, DeVincente J 2009 IEEE International Frequency Control Symp. Joint with the 22 nd European Frequency and Time Forum 376Google Scholar

    [16]

    Le Floch J M, Fan Y, Humbert G, Shan Q X, Férachou D, Bara-Maillet R, Aubourg M, Hartnett J G, Madrangeas V, Cros D, Blondy J M, Krupka, Tobar M E 2014 Rev. Sci. Instrum. 85 031301Google Scholar

    [17]

    Le Floch J M, Murphy C, Hartnett J G, Madrangeas V, Krupka J, Cros D, Tobar M E 2017 J. Appl. Phys. 121 014102Google Scholar

    [18]

    Krupka J, Derzakowski K, Abramowicz A, Tobar M E 1999 IEEE Trans. Microwave Theory Tech. 47 752Google Scholar

    [19]

    Tobar M E, Mann A G 1991 IEEE Trans. Microwave Theory Tech. 39 2077Google Scholar

    [20]

    Di Monaco O 1997 Ph. D. Dissertation (Besançon: Université de Franche Comté)

    [21]

    Liang X P, Zaki K A 1993 IEEE Trans. Microwave Theory Tech. 41 2174Google Scholar

    [22]

    Rayleigh L 1910 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 20 1001Google Scholar

    [23]

    Kobayashi Y, Tanaka S 1980 IEEE Trans. Microwave Theory Tech. 28 1077Google Scholar

    [24]

    Zaki K A, Atia A E 1983 IEEE Trans. Microwave Theory Tech. 31 1039Google Scholar

    [25]

    Peng H, Blair D G 1994 Proceedings of IEEE 48th Annual Symposium on Frequency Control 459

    [26]

    Aubourg M, Guillon P 1991 JEWA 5 371Google Scholar

    [27]

    Strang G, Fix G J, Griffin D S 1974 J. Appl. Mech. 41 62Google Scholar

    [28]

    Jin J M 2002 The Finite Element Method in Electromagnetics (2nd Ed. ) (NewYork: Wiley-IEEE Press)

    [29]

    Tobar M E, Krupka J, Ivanov E N, Woode R A 1996 IEEE International Frequency Control Symp. 799

    [30]

    Shelby R, Fontanella J, Andeen C 1980 J. Phys. Chem. Solids 41 69Google Scholar

    [31]

    White G K 1993 Thermochim. Acta 218 83Google Scholar

  • [1] 郑旭骞, 巩思豫, 耿红尚, 郭宇锋. Ga2O3纳米机电谐振器机械能量耗散途径研究. 物理学报, 2025, 74(7): 078501. doi: 10.7498/aps.74.20241706
    [2] 马博文, 戴雯, 孟飞, 陶家宁, 武子铃, 石岩青, 方占军, 胡明列, 宋有建. 基于异步光学采样的电光频率梳时间抖动测量. 物理学报, 2024, 73(14): 144203. doi: 10.7498/aps.73.20240400
    [3] 覃俭. 光源相位噪声对高斯玻色采样的影响. 物理学报, 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [4] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [5] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [6] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数. 物理学报, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [7] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [8] 项晓, 王少锋, 侯飞雁, 权润爱, 翟艺伟, 王盟盟, 周聪华, 许冠军, 董瑞芳, 刘涛, 张首刚. 利用共振无源腔分析和抑制飞秒脉冲激光噪声的理论和实验研究. 物理学报, 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [9] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [10] 焦新泉, 陈家斌, 王晓丽, 薛晨阳, 任勇峰. 基于新型三环谐振器的诱导透明效应分析. 物理学报, 2015, 64(14): 144202. doi: 10.7498/aps.64.144202
    [11] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [12] 丁学利, 李玉叶. 相位噪声诱发神经放电的单次或两次相干共振. 物理学报, 2014, 63(24): 248701. doi: 10.7498/aps.63.248701
    [13] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [14] 宋顾周, 马继明, 王奎禄, 周鸣. 厚针孔射线成像品质因数的研究. 物理学报, 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [15] 丁燕红, 李明吉, 杨保和, 马叙. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性. 物理学报, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [16] 祝昆, 周丽, 尤洪海, 江楠, 普小云. 光纤回音壁模式激光产生长度的实验与理论研究. 物理学报, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [17] 张远宪, 冯永利, 周丽, 普小云. 偏斜光线抽运下的回音壁模式光纤激光辐射特性. 物理学报, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [18] 普小云, 白然, 向文丽, 杜飞, 江楠. 消逝波激励的双波段光纤回音壁模式激光辐射. 物理学报, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [19] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [20] 杨 睿, 於文华, 鲍 洋, 张远宪, 普小云. 消逝场耦合圆柱形微腔中回音壁模式结构的实验研究. 物理学报, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
  • 期刊类型引用(2)

    1. 刘盈,熊宜松,李月,李鑫,曾成,宁俊松,补世荣,王占平,张晓雨,刘绍阳,郭婉婷. X波段低相噪蓝宝石振荡器. 强激光与粒子束. 2024(03): 23-27 . 百度学术
    2. 苗俊田,刘冬冬,李卓军,赵博,鹿德台. 基于双正交样条小波的输油管道焊接缺陷漏磁信号识别技术. 现代电子技术. 2023(21): 55-58 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  4807
  • PDF下载量:  61
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-06-10
  • 修回日期:  2022-07-19
  • 上网日期:  2022-11-26
  • 刊出日期:  2022-12-05

/

返回文章
返回