-
When the electromagnetic field in the sapphire resonator corresponds to the whispering gallery mode, it exhibits an extremely low dielectric loss. As result, sapphire oscillator has the characteristics of ultra-low phase noise and high short-term frequency stability. The distribution of electromagnetic field in the sapphire resonator is very important for realizing high-level oscillator. In this work, the radial-axial mode matching method is used to theoretically analyze the distribution of the field mode in the sapphire resonator, and the resonant frequency of the WGHm,0,0 mode is calculated. The field distribution of the sapphire resonator is simulated by the finite element analysis method. The gallery mode number of the sapphire resonator is studied and the electromagnetic field intensity distribution of the WGH15,0,0 mode in the azimuthal, axial and radial direction are obtained. Finally, a home-made gallery mode analyzer is used to measure the microwave field on the surface of sapphire resonator, which is composed of a three-dimensional rotating stage , the magnetic ring/probe coupling and a vector network analyzer. With the above theoretical analysis, the finite element analysis method and the experimental measurement, the working mode of the sapphire resonator and the resonant frequency of the WGHm,0,0 mode are determined. When the sapphire resonator works in WGH15,0,0 mode, the resonant frequency is 9.891 GHz, and the parameters of the whispering gallery mode in the resonator are obtained, and the unloaded Q value of the resonator is 94000. When the temperature is 292 K, the frequency-temperature sensitivity of the sapphire resonator working in the WGHm,0,0 whispering gallery mode is about
71.64×10−6 . The microwave oscillator consisting of the high Q sapphire resonator can be used to make an oscillator with ultra-low phase noise and high frequency stability.-
Keywords:
- sapphire resonator /
- whispering gallery mode /
- phase noise /
- quality factor
1. 引 言
蓝宝石谐振体内的电磁场为回音壁模式时具有极低的介质损耗[1], 由此制成的振荡器具有超低相位噪声和较高中短期频率稳定度等特性[2,3], 在原子频率标准[4-7]、暗物质探测[8,9]、量子计算[10,11]、甚长基线干涉仪[12,13]和深空探测[14,15]等领域有重要应用. 蓝宝石谐振体内的电磁场模式与振荡器品质因子Q存在确定的函数关系[16,17], 直接影响着振荡器的相位噪声, 因此确定蓝宝石谐振体内的电磁场分布是实现高性能振荡器的先决条件. 由于回音壁模式的电磁场绝大部分分布在蓝宝石内部, 并不能直接利用探针测量其分布, 一般多采用模式匹配法[18-21], 计算特定模式的谐振频率和蓝宝石内部的电磁场分布, 或者应用软件仿真方法来确定电磁场分布, 很少进行实验验证.
本文设计并研制了装配双端磁环/探针的精密转动位移台, 激励产生了蓝宝石谐振体内的回音壁模式电磁场, 同时获得了蓝宝石谐振体外的电磁场分布, 通过与模式匹配法理论计算和微波软件仿真结果进行比较, 从而确定了蓝宝石谐振体内的回音壁模式电磁场参数.
2. 蓝宝石谐振体的电磁场模式结构
蓝宝石是各向异性的单晶体材料, 对于圆柱形蓝宝石, 它的晶轴(C轴)与z轴平行, 平行于晶轴方向的相对介电常数为
ε// , 垂直于晶轴方向的相对介电常数为εr 和εθ . 实验中蓝宝石尺寸为直径54.21 mm, 高30.00 mm, 蓝宝石柱体的一端有一个直径10.00 mm, 高22.00 mm的小圆柱体用于将蓝宝石固定在腔内. 在292 K时, 蓝宝石的相对介电常数ε⊥=9.39,ε//=11.576 .2.1 理论研究
介质谐振体理论分析方法有介质波导法[22]、径向模式匹配法[23]、轴向模式匹配法[24], 本文采用Tabor和Mann [19]提出的径向与轴向结合的模式匹配方法.
径向匹配得到以下超越方程[25]:
(εrJ′m(xE)xEx2HJm(xE)+K′m(y)yKm(y))(J′m(xH)xHJm(xH)+K′m(y)yKm(y))=m2(x2H+εry2)(x2H+y2)x4Hy4, (1) 在这里,
xE=kEd2,xH=kHd2,y=koutd2,k2E=εzk20−β2εzεr,k2H=εrk20−β2,k2out=β2−k20, 其中,
Jm 为m阶第一类贝塞尔函数,Km 为m阶第二类修正贝塞尔函数,kE 是平行于c轴的介质传播常数,kH 是垂直于c轴的介质传播常数, β是轴向传播常数,kout 是外径向传播常数,k0 是自由空间波数.轴向匹配可以得到:
(−√−β2+(εr−1)k20εrcos(βz)+βsin(βz))×(√−β2+(εr−1)k20sin(βz)+βcos(βz))=0, (2) 利用上述两个方程即可求得蓝宝石谐振体工作在回音壁模式的谐振频率.
2.2 蓝宝谐振体内的电磁场仿真分析
有限元方法可以仿真蓝宝石谐振体内的电磁场分布情况[26-28]. 利用三维电磁场仿真软件CST Studio Suite建立仿真模型, 使用本征模求解器仿真蓝宝石晶体工作在回音壁模式下的场分布, 仿真模型如图1(a)所示. 分别对蓝宝石谐振体和空气区域进行不同的网格剖分, 求解数值精度为10–9, 迭代次数为6. 当蓝宝石介质工作在WGH15,0,0模式时, 电磁场的能量密度分布如图1(b)和图1(c)所示. 图1(b)中, 圆柱体为蓝宝石柱, 外部为空气, 电磁能量被限制在蓝宝石晶体边界靠近空气的地方, 在方位角上呈现花瓣形状, 具有周期性.
2.3 蓝宝石谐振体的电磁场分布实验测量
通过近场探测的方法确定蓝宝石柱腔内的微波模式场分布, 测试装置如图2所示.
矢量网络分析仪作为微波产生和探测的装置, 使用主动型氢钟作为其时钟参考. 矢量网络分析仪端口1发射的微波通过固定的磁环耦合进样品, 在内部和表面形成回音壁模式的谐振器电磁场. 用磁环或探针对样品表面电磁场进行探测, 磁环和探针天线通过精密位移台(分辨率0.01 mm)和转动台(分辨率0.01°)固定, 接收端可沿轴向(z)、径向(ρ)和方位角(θ)方向调节. 可移动的磁环或天线连接到矢量网络分析仪端口2作为微波接收端, 测量S参数随空间的变化情况. 调节臂2的轴向高度, 可以确定WGH模式轴向数; 将臂3探针沿径向移动, 可以确定径向数; 将臂2绕蓝宝石样品旋转, 观测S21变化的周期性变化, 可以确定方位角数.
3. 结果分析和讨论
3.1 蓝宝石谐振体回音壁模式分析
利用上述测量装置对WGH15,0,0模近场进行测量, 并与有限元仿真电磁场强度绝对值进行对比, 如图3所示, 其中黑线表示有限元仿真法电磁场强度绝对值, 红线表示实验测量S21值. 图3(a)表示磁场强度方位角向分布, 磁环绕方位角方向S21测量值和有限元法的磁场强度绝对值变化趋势基本符合, 在方位角上电磁场强度具有周期性, 每12°为一个周期, 故
m=15 . 图3(b)表示磁场强度轴向分布, 磁环位置在轴向上高度变化激励的S21值与有限元法的磁场强度绝对值较一致, 在轴向上p=0 . 图3(c)表示电场强度径向分布, 探针位置在径向上变化激励的S21值与有限元法的电场强度绝对值趋势一致, 在径向上电场强度具有对称性,n=0 .图 3 WGH15,0,0模式电磁场强度 (a) 磁场强度方位角向分布; (b) 磁场强度轴向分布; (c)电场强度径向分布Fig. 3. Electromagnetic field intensity of WGH15,0,0: (a) Cross-section distribution of magnetic field intensity; (b) axial cross-section distribution of magnetic field intensity; (c) cross-section distribution of electric field intensity diameter.3.2 蓝宝石谐振体谐振频率分析
实验中, 采用磁耦合方式激发和探测. 图4中, 红线为通过模式匹配法计算出的WGHm,0,0模式谐振频率, 蓝线为有限元分析法得到的WGHm,0,0模式谐振频率, 绿线为实验测得的WGHm,0,0模式谐振频率. 理论计算、有限元法仿真和实际测量得到的频率值基本符合.
WGHm,0,0模式测量的谐振频率与方位角模式数呈线性关系, 与理论计算值和有限元分析结果一致. 表1给出理论计算、有限元仿真和实验测量得到的谐振频率, 并且计算得到精度. 分析可得, 有限元仿真得到的精度
Δf/f<0.06% , 实验测量结果得到的精度Δf/f<0.02% .表 1 m = 10—19的谐振频率Table 1. Resonant frequency of m = 10–19.回音壁模式 f/GHz Δf有限元-理论/f理论 Δf测量-理论/f理论 理论计算 有限元法 实验测量 WGH10, 0,0 7.06686 7.07063 7.07181 0.053% 0.070% WGH11,0,0 7.63521 7.63784 7.63925 0.035% 0.053% WGH12,0,0 8.20160 8.20355 8.20443 0.024% 0.035% WGH13,0,0 8.76613 8.76745 8.76761 0.015% 0.017% WGH14,0,0 9.32905 9.33030 9.32983 0.013% 0.008% WGH15,0,0 9.89051 9.89011 9.89062 –0.004% 0.001% WGH16,0,0 10.45054 10.45390 10.45008 0.032% –0.004% WGH17,0,0 11.00933 11.01550 11.00863 0.056% –0.006% WGH18,0,0 11.56694 11.56940 11.56593 0.022% –0.009% WGH19,0,0 12.12345 12.12100 12.12218 –0.020% –0.010% 图5中, 测量带宽为300 MHz, 激发探头和探测磁环之间的夹角为180°. WGH15,0,0附近存在多个杂散模, 在形成振荡环路时, 容易跳频. 图3中, WGH15,0,0在方位角方向上存在周期性, 当激发磁环和探测磁环之间的夹角为180°时, 所有模态都被激发. 改变可移动磁环在方位角方向上的位置, 将其固定在WGH15,0,0最大场位置, 此时磁环沿谐振体轴旋转
180∘m=15=12∘ , 激发磁环和探测磁环之间的夹角为168°, WGH15,0,0模式不受影响, 且杂散模式被有效抑制, 测试结果如图5中绿线所示.当激发磁环和探测磁环之间的夹角为168°时, 利用矢量网络分析仪ZVB14对蓝宝石谐振体的S参数进行测量, 结果如图6所示, 测量带宽为2 MHz. 红线为S12, 绿线为S21, 其中
f0=9891754142Hz,Δf=124041Hz , 根据QL=f0Δf 可得,QL≈8×104 , 故Q0=QL1−S21≈9.4×104 .3.3 谐振腔频率-温度敏感度分析
温度是影响蓝宝石谐振体的谐振频率的主要因素. 其频率-温度敏感度(TCF)[29]如下:
1f∂f∂T=−12pe⊥αε⊥−12pe//αε//−pDαD−pLαL, (3) 式中,
pe⊥=2|∂f∂ε⊥|ε⊥f,pe//=2|∂f∂ε//|ε//f,pD=∂f∂DDf,pL=∂f∂LLf,αε⊥=1ε⊥∂ε⊥∂T,αε//=1ε//∂ε//∂T, αD=1D∂D∂T,αL=1L∂L∂T, pe⊥ 和pe// 分别为垂直于晶轴方向和平行于晶轴方向的电场填充因子,pD 和pL 分别为回音壁模式谐振频率对蓝宝石柱直径和高度变化的敏感度,αε⊥ 和αε// 分别为垂直于晶轴方向和平行于晶轴方向的介电常数温度系数,αD 和αL 分别为垂直于晶轴方向和平行于晶轴方向的热膨胀系数.分别加入微扰
ΔD 和ΔL , 通过模式匹配法和有限元分析法分别求得此时的Δf . 图7给出蓝宝石谐振体直径(D)和高度(L)变化对回音壁模式WGH15,0,0谐振频率的影响. 改变蓝宝石柱直径D (mm)得到谐振频率随直径的变化关系, 根据pD=∂f∂DDf 可得,pD≈0.973 . 保持蓝宝石柱直径不变, 改变高度H (mm)得到谐振频率随高度的变化关系, 根据pL=∂f∂LLf 可得,pL≈0.027 . 可以看出谐振频率随直径变化的敏感度大于随高度变化的敏感度.分别加入微扰
Δε⊥ 和Δε// , 通过模式匹配法和有限元分析法分别求得此时的Δf . 图8给出了蓝宝石回音壁模式WGH15,0,0谐振频率与相对介电常数的关系. 改变蓝宝石垂直于晶轴的相对介电常数得到谐振频率随ε⊥ 的变化关系, 根据pe⊥=2|∂f∂ε⊥|ε⊥f 可得,pe⊥≈0.032 . 保持蓝宝石垂直于晶轴的相对介电常数不变, 改变平行于晶轴的相对介电常数, 得到谐振频率随ε// 的变化关系, 根据pe//=2|∂f∂ε//|ε//f 可得,pe//≈0.96 . 谐振频率随平行于晶轴的相对介电常数变化的敏感度大于随垂直于晶轴的相对介电常数变化的敏感度.对于WGH15,0,0模, TCF近似为
1f∂f∂T=−12αε//−αD, (4) 结果表明, 蓝宝石谐振体工作在WGH15,0,0回音壁模式的频率-温度敏感度主要与平行于晶轴方向的介电常数温度系数和垂直于晶轴方向的热膨胀系数有关.
图9给出垂直于晶轴的介电常数和平行于晶轴的介电常数与温度的关系 [30]. 在低温下, 介电常数对温度的敏感度小, 随温度的变化趋势较缓慢; 当温度升高到一定值时, 介电常数对温度的敏感度逐渐增大, 随温度的变化趋势较快. 图9中蓝线表示当温度为292 K时加入微扰
ΔT , 分别求得此时的Δε⊥ 与Δε// . 改变温度得到介电常数随温度的变化关系. 根据αε⊥=1ε⊥∂ε⊥∂T 可得,αε⊥≈91.07×10−6 K−1 . 根据αε//=1ε//∂ε//∂T 可得,αε//≈133.03×10−6 K−1 .图10给出垂直于晶轴的热膨胀系数和平行于晶轴的热膨胀系数与温度的关系[31]. 图中蓝线表示在温度为20—350 K时, 垂直于晶轴的热膨胀系数和平行于晶轴的热膨胀系数与温度关系的拟合曲线:
αD=0.01423−0.006T+1.65848×10−4T2−2.92527×10−7T3,αL=−0.10269−0.00306T+1.78122×10−4T2−3.32844×10−7T3, (5) 当温度是292 K时, 根据(5)式可得,
αD=5.12×10−6,αL=5.90×10−6 . 比较可知, 介电常数温度系数对温度的敏感度比热膨胀系数约大10倍, 因此, 蓝宝石谐振体工作在WGH回音壁模式时, 频率-温度敏感度主要与平行于晶轴方向的介电常数温度系数有关. 根据(4)式可得, 当温度为292 K时, 蓝宝石谐振体工作在WGH回音壁模式的频率-温度敏感度约为71.64×10−6 . 因此, 为了使蓝宝石谐振体有较高的中短期频率稳定度, 需要采用精密的温控技术或者对频率-温度敏感度进行补偿.4. 结 论
本文以蓝宝石谐振体为基础, 通过理论分析和模拟仿真, 对蓝宝石谐振体工作在WGH15,0,0模式下的尺寸、结构进行了优化设计. 理论计算了蓝宝石谐振体高度和直径以及相对介电常数对谐振频率的影响. 通过对蓝宝石谐振体进行耦合测试与调节, 最终实现了蓝宝石谐振体的谐振频率为9.891 GHz, 无载Q值为94000, 由此可制成具有低相位噪声特性的微波振荡器.
[1] Tobar M E, Krupka J, Ivanov E N, Woode R A 1997 J. Phys. D: Appl. Phys. 30 2770
Google Scholar
[2] Hartnett J G, Nand N R, Lu C 2012 Appl. Phys. Lett. 100 183501
Google Scholar
[3] Calosso C E, Vernotte F, Giordano V, Fluhr C, Dubois B, Rubiola E 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 616
Google Scholar
[4] Santarelli G, Laurent Ph, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619
Google Scholar
[5] Takamizawa A, Yanagimachi S, Hagimoto K 2022 Metrologia 59 035004
Google Scholar
[6] 王倩, 魏荣, 王育竹 2018 物理学报 67 163202
Google Scholar
Wang Q, Wei R, Wang Y Z 2018 Acta Phys. Sin. 67 163202
Google Scholar
[7] Guena J, Abgrall M, Clairon A, Bize S 2014 Metro. 51 108
Google Scholar
[8] Thomson C A, McAllister B T, Goryachev M, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 081803
Google Scholar
[9] Campbell W M, McAllister B T, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 071301
Google Scholar
[10] Ball H, Oliver W D, Biercuk M J 2016 npj Quantum Inf. 2 1
Google Scholar
[11] Sepiol M A, Hughes A C, Tarlton J E, Nadlinger D P, Balance T G, Balance C J, Harty T P, Steane A M, Goodwin J F, Lucas D M 2019 Phys. Rev. Lett. 123 110503
Google Scholar
[12] Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microwave Theory Tech. 59 2978
Google Scholar
[13] Doeleman S, Mai T, Rogers A E E, Hartnett J G, Tobar M E, Nand N 2011 PASP 123 582
Google Scholar
[14] Giordano V, Grop S, Dubois B, Bourgeois P Y, Kersalé Y, Haye G, Dolgovskiy V, Bucalovic N, Domenico G D, Schilt S, Chauvin J, Valat D, Rubiola E 2012 Rev. Sci. Instrum. 83 085113
Google Scholar
[15] Grop S, Giordano V, Bourgeois P Y, Bazin N, Kersale Y, Oxborrow M, Marra G, Langham C, Rubiola E, DeVincente J 2009 IEEE International Frequency Control Symp. Joint with the 22 nd European Frequency and Time Forum 376
Google Scholar
[16] Le Floch J M, Fan Y, Humbert G, Shan Q X, Férachou D, Bara-Maillet R, Aubourg M, Hartnett J G, Madrangeas V, Cros D, Blondy J M, Krupka, Tobar M E 2014 Rev. Sci. Instrum. 85 031301
Google Scholar
[17] Le Floch J M, Murphy C, Hartnett J G, Madrangeas V, Krupka J, Cros D, Tobar M E 2017 J. Appl. Phys. 121 014102
Google Scholar
[18] Krupka J, Derzakowski K, Abramowicz A, Tobar M E 1999 IEEE Trans. Microwave Theory Tech. 47 752
Google Scholar
[19] Tobar M E, Mann A G 1991 IEEE Trans. Microwave Theory Tech. 39 2077
Google Scholar
[20] Di Monaco O 1997 Ph. D. Dissertation (Besançon: Université de Franche Comté)
[21] Liang X P, Zaki K A 1993 IEEE Trans. Microwave Theory Tech. 41 2174
Google Scholar
[22] Rayleigh L 1910 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 20 1001
Google Scholar
[23] Kobayashi Y, Tanaka S 1980 IEEE Trans. Microwave Theory Tech. 28 1077
Google Scholar
[24] Zaki K A, Atia A E 1983 IEEE Trans. Microwave Theory Tech. 31 1039
Google Scholar
[25] Peng H, Blair D G 1994 Proceedings of IEEE 48th Annual Symposium on Frequency Control 459
[26] Aubourg M, Guillon P 1991 JEWA 5 371
Google Scholar
[27] Strang G, Fix G J, Griffin D S 1974 J. Appl. Mech. 41 62
Google Scholar
[28] Jin J M 2002 The Finite Element Method in Electromagnetics (2nd Ed. ) (NewYork: Wiley-IEEE Press)
[29] Tobar M E, Krupka J, Ivanov E N, Woode R A 1996 IEEE International Frequency Control Symp. 799
[30] Shelby R, Fontanella J, Andeen C 1980 J. Phys. Chem. Solids 41 69
Google Scholar
[31] White G K 1993 Thermochim. Acta 218 83
Google Scholar
-
图 3 WGH15,0,0模式电磁场强度 (a) 磁场强度方位角向分布; (b) 磁场强度轴向分布; (c)电场强度径向分布
Fig. 3. Electromagnetic field intensity of WGH15,0,0: (a) Cross-section distribution of magnetic field intensity; (b) axial cross-section distribution of magnetic field intensity; (c) cross-section distribution of electric field intensity diameter.
表 1 m = 10—19的谐振频率
Table 1. Resonant frequency of m = 10–19.
回音壁模式 f/GHz Δf有限元-理论/f理论 Δf测量-理论/f理论 理论计算 有限元法 实验测量 WGH10, 0,0 7.06686 7.07063 7.07181 0.053% 0.070% WGH11,0,0 7.63521 7.63784 7.63925 0.035% 0.053% WGH12,0,0 8.20160 8.20355 8.20443 0.024% 0.035% WGH13,0,0 8.76613 8.76745 8.76761 0.015% 0.017% WGH14,0,0 9.32905 9.33030 9.32983 0.013% 0.008% WGH15,0,0 9.89051 9.89011 9.89062 –0.004% 0.001% WGH16,0,0 10.45054 10.45390 10.45008 0.032% –0.004% WGH17,0,0 11.00933 11.01550 11.00863 0.056% –0.006% WGH18,0,0 11.56694 11.56940 11.56593 0.022% –0.009% WGH19,0,0 12.12345 12.12100 12.12218 –0.020% –0.010% -
[1] Tobar M E, Krupka J, Ivanov E N, Woode R A 1997 J. Phys. D: Appl. Phys. 30 2770
Google Scholar
[2] Hartnett J G, Nand N R, Lu C 2012 Appl. Phys. Lett. 100 183501
Google Scholar
[3] Calosso C E, Vernotte F, Giordano V, Fluhr C, Dubois B, Rubiola E 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 616
Google Scholar
[4] Santarelli G, Laurent Ph, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619
Google Scholar
[5] Takamizawa A, Yanagimachi S, Hagimoto K 2022 Metrologia 59 035004
Google Scholar
[6] 王倩, 魏荣, 王育竹 2018 物理学报 67 163202
Google Scholar
Wang Q, Wei R, Wang Y Z 2018 Acta Phys. Sin. 67 163202
Google Scholar
[7] Guena J, Abgrall M, Clairon A, Bize S 2014 Metro. 51 108
Google Scholar
[8] Thomson C A, McAllister B T, Goryachev M, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 081803
Google Scholar
[9] Campbell W M, McAllister B T, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 071301
Google Scholar
[10] Ball H, Oliver W D, Biercuk M J 2016 npj Quantum Inf. 2 1
Google Scholar
[11] Sepiol M A, Hughes A C, Tarlton J E, Nadlinger D P, Balance T G, Balance C J, Harty T P, Steane A M, Goodwin J F, Lucas D M 2019 Phys. Rev. Lett. 123 110503
Google Scholar
[12] Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microwave Theory Tech. 59 2978
Google Scholar
[13] Doeleman S, Mai T, Rogers A E E, Hartnett J G, Tobar M E, Nand N 2011 PASP 123 582
Google Scholar
[14] Giordano V, Grop S, Dubois B, Bourgeois P Y, Kersalé Y, Haye G, Dolgovskiy V, Bucalovic N, Domenico G D, Schilt S, Chauvin J, Valat D, Rubiola E 2012 Rev. Sci. Instrum. 83 085113
Google Scholar
[15] Grop S, Giordano V, Bourgeois P Y, Bazin N, Kersale Y, Oxborrow M, Marra G, Langham C, Rubiola E, DeVincente J 2009 IEEE International Frequency Control Symp. Joint with the 22 nd European Frequency and Time Forum 376
Google Scholar
[16] Le Floch J M, Fan Y, Humbert G, Shan Q X, Férachou D, Bara-Maillet R, Aubourg M, Hartnett J G, Madrangeas V, Cros D, Blondy J M, Krupka, Tobar M E 2014 Rev. Sci. Instrum. 85 031301
Google Scholar
[17] Le Floch J M, Murphy C, Hartnett J G, Madrangeas V, Krupka J, Cros D, Tobar M E 2017 J. Appl. Phys. 121 014102
Google Scholar
[18] Krupka J, Derzakowski K, Abramowicz A, Tobar M E 1999 IEEE Trans. Microwave Theory Tech. 47 752
Google Scholar
[19] Tobar M E, Mann A G 1991 IEEE Trans. Microwave Theory Tech. 39 2077
Google Scholar
[20] Di Monaco O 1997 Ph. D. Dissertation (Besançon: Université de Franche Comté)
[21] Liang X P, Zaki K A 1993 IEEE Trans. Microwave Theory Tech. 41 2174
Google Scholar
[22] Rayleigh L 1910 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 20 1001
Google Scholar
[23] Kobayashi Y, Tanaka S 1980 IEEE Trans. Microwave Theory Tech. 28 1077
Google Scholar
[24] Zaki K A, Atia A E 1983 IEEE Trans. Microwave Theory Tech. 31 1039
Google Scholar
[25] Peng H, Blair D G 1994 Proceedings of IEEE 48th Annual Symposium on Frequency Control 459
[26] Aubourg M, Guillon P 1991 JEWA 5 371
Google Scholar
[27] Strang G, Fix G J, Griffin D S 1974 J. Appl. Mech. 41 62
Google Scholar
[28] Jin J M 2002 The Finite Element Method in Electromagnetics (2nd Ed. ) (NewYork: Wiley-IEEE Press)
[29] Tobar M E, Krupka J, Ivanov E N, Woode R A 1996 IEEE International Frequency Control Symp. 799
[30] Shelby R, Fontanella J, Andeen C 1980 J. Phys. Chem. Solids 41 69
Google Scholar
[31] White G K 1993 Thermochim. Acta 218 83
Google Scholar
期刊类型引用(2)
1. 刘盈,熊宜松,李月,李鑫,曾成,宁俊松,补世荣,王占平,张晓雨,刘绍阳,郭婉婷. X波段低相噪蓝宝石振荡器. 强激光与粒子束. 2024(03): 23-27 . 百度学术
2. 苗俊田,刘冬冬,李卓军,赵博,鹿德台. 基于双正交样条小波的输油管道焊接缺陷漏磁信号识别技术. 现代电子技术. 2023(21): 55-58 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 4807
- PDF下载量: 61
- 被引次数: 2