搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位噪声诱发神经放电的单次或两次相干共振

丁学利 李玉叶

引用本文:
Citation:

相位噪声诱发神经放电的单次或两次相干共振

丁学利, 李玉叶

Phase noise induced single or double coherence resonances of neural firing

Ding Xue-Li, Li Yu-Ye
PDF
导出引用
  • 神经元电活动可以从静息通过Hopf分岔到放电, 放电频率有固定周期; 也可以从静息通过鞍-结分岔到放电, 放电频率接近零. 在具有周期性的相位噪声作用下的Hopf分岔和鞍-结分岔点附近, 都会产生相干共振. 噪声的周期小于Hopf分岔点附近的放电的周期时, 相位噪声可以引起神经系统产生一次相干共振, 位于系统内在的固有频率附近; 噪声的周期大于系统的固有周期时, 相位噪声可以引起双共振, 对应低噪声强度的共振产生在噪声频率附近, 对应高噪声强度的共振产生在系统的固有频率附近; 并对双共振的产生原因进行了解释. 在鞍-结分岔点附近, 无论噪声的周期是大是小, 都只会引起一次共振, 研究结果不仅揭示了相位噪声作用下平衡点分岔点相干共振的动力学特性和对应于两类分岔的两类神经兴奋性的差别, 还对近期的相位噪声诱发产生单或双共振的不同研究结果给出了解释.
    Neuronal firing activity can be changed from the resting state to firing state either through Hopf bifurcation where the firing exhibits a fixed period or through saddle-node bifurcation where the firing frequency is nearly zero. Phase noise with periodicity can induce coherence resonances near Hopf and saddle-node bifurcation points. When the period of phase noise is shorter than the internal period of firing near the Hopf bifurcation point, the phase noise can induce single coherence resonance appearing near the frequency of the phase noise. When the period of phase noise is longer than the internal period of firing near the Hopf bifurcation point, the phase noise can induce double coherence resonances. The resonance at low noise intensity appears near the frequency of the phase noise, and the one at large noise intensity occurs near the frequency of the firing near the Hopf bifurcation. The mechanism of the double resonances is explained. Unlike the Hopf bifurcation point, only a single coherence resonance can be induced near the saddle-node bifurcation point by the phase noise with long or short periods. The results not only reveal the dynamics of phase noise induced coherence resonance of the equilibrium point and identify the distinction between two types of neuronal excitabilities corresponding to two kinds of bifurcations, but also provide an explanation about the different results of phase noise induced single or double resonances simulated in recent studies.
    • 基金项目: 内蒙古自然科学基金面上项目(批准号: 2012MS0103)资助的课题.
    • Funds: Project supported by Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2012MS0103).
    [1]

    Braun H A, Wissing H, Schäfer K, Hirsch M C 1994 Nature 367 270

    [2]

    Longtin A, Bulsara A, Moss F 1991 Phys. Rev. Lett. 67 656

    [3]

    Gu H G, Ren W, Lu Q S, Wu S G, Yang M H, Chen W J 2001 Phys. Lett. A 285 63

    [4]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2002 Neuro Report 13 1657

    [5]

    Yang M H, Li L, Liu Z Q, Xu Y L, Liu H J, Gu H G, Ren W 2009 Int. J. Bifurcat. Chaos 19 453

    [6]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A 14 L453

    [7]

    Douglass J K, Wilkens L, Pantazelou E, Moss F 1993 Nature 365 337

    [8]

    Jung P, Mayer-Kress G 1995 Phys. Rev. Lett. 74 2130

    [9]

    Hu G, Ditzinger T, Ning C, Haken H 1993 Phys. Rev. Lett. 71 807

    [10]

    Zhou C S, Kurths J 2002 Phys. Rev. E 65 040101

    [11]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171

    [12]

    Hodgkin A 1948 J. Physiol. 107 165

    [13]

    Rinzel J, Ermentrout G B 1989 Analysis of Neural Excitability and Oscillations (Cambridge: The MIT Press) p135

    [14]

    Gu H G, Zhang H M, Wei C L, Yang M H, Liu Z Q, Ren W 2011 Int. J. Mod. Phys. B 25 3977

    [15]

    Jia B, Gu H G 2012 Cogn. Neurodyn. 6 485

    [16]

    Xie Y, Xu J X, Kang Y M, Hu S J, Duan Y B 2004 Chin. Phys. 13 1396

    [17]

    Tateno T, Harsch A, Robinson H 2004 J. Neurophysiol. 92 2283

    [18]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [19]

    FitzHugh R 1961 Biophys. J. 1 445

    [20]

    Gu H G, Xi L, Jia B 2012 Acta Phys. Sin. 61 080504 (in Chinese) [古华光, 惠磊, 贾冰 2012 物理学报 61 080504]

    [21]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2003 Int. J. Mod. Phys. B 17 4195

    [22]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2003 Phys. Lett. A 319 89

    [23]

    Zeng L Z, Xu B H 2010 Physica A 22 5128

    [24]

    Gu H G, Zhu Z, Jia B 2011 Acta Phys. Sin. 60 100505 (in Chinese) [古华光, 朱洲, 贾冰 2011 物理学报 60 100505]

    [25]

    Zhang Y, Hu G, Gammaitoni L 1998 Phys. Rev. E 58 2952

    [26]

    Liu W, Zhu W, Huang Z 2001 Chaos Soliton. Fract. 12 527

    [27]

    Demir A, Mehrotra A, Roychowdhury J 2000 IEEE Trans. Circuits Syst. 47 655

    [28]

    Xi L X, Li J P, Du S C, Xu X, Zhao X G 2011 Chin. Phys. B 20 024214

    [29]

    Chen W, Meng Z, Zhou H J, Luo H 2012 Chin. Phys. B 21 034212

    [30]

    Ma Y X, Xi L X, Chen G, Zhang X G 2012 Chin. Phys. B 21 064222

    [31]

    Kang X S, Liang X M, Lu H P 2013 Chin. Phys. Lett. 30 018701

    [32]

    Liang X M, Zhao L, Liu Z H 2011 Phys. Rev. E 84 031916

    [33]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [34]

    Tateno T, Pakdaman K 2004 Chaos 14 511

    [35]

    Tsumoto K, Kitajima H, Yoshinaga T, Aihara K, Kawakami H 2006 Neurocomputing 69 293

    [36]

    Li Y Y, Zhang H M, Wei C L, Yang M H, Gu H G, Ren W 2009 Chin. Phys. Lett. 26 030504

    [37]

    Liu Z Q, Zhang H M, Li Y Y, Hua C C, Gu H G, Ren W 2010 Physica A 389 2642

    [38]

    Li Y Y, Jia B, Gu H G 2012 Acta Phys. Sin. 61 070504 (in Chinese) [李玉叶, 贾冰, 古华光 2012 物理学报 61 070504]

    [39]

    Gu H G, Jia B, Lu Q S 2011 Cogn. Neurodyn. 5 87

    [40]

    Xie Y, Xu J X, Hu S J 2004 Chaos Soliton. Fract. 21 177

  • [1]

    Braun H A, Wissing H, Schäfer K, Hirsch M C 1994 Nature 367 270

    [2]

    Longtin A, Bulsara A, Moss F 1991 Phys. Rev. Lett. 67 656

    [3]

    Gu H G, Ren W, Lu Q S, Wu S G, Yang M H, Chen W J 2001 Phys. Lett. A 285 63

    [4]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2002 Neuro Report 13 1657

    [5]

    Yang M H, Li L, Liu Z Q, Xu Y L, Liu H J, Gu H G, Ren W 2009 Int. J. Bifurcat. Chaos 19 453

    [6]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A 14 L453

    [7]

    Douglass J K, Wilkens L, Pantazelou E, Moss F 1993 Nature 365 337

    [8]

    Jung P, Mayer-Kress G 1995 Phys. Rev. Lett. 74 2130

    [9]

    Hu G, Ditzinger T, Ning C, Haken H 1993 Phys. Rev. Lett. 71 807

    [10]

    Zhou C S, Kurths J 2002 Phys. Rev. E 65 040101

    [11]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171

    [12]

    Hodgkin A 1948 J. Physiol. 107 165

    [13]

    Rinzel J, Ermentrout G B 1989 Analysis of Neural Excitability and Oscillations (Cambridge: The MIT Press) p135

    [14]

    Gu H G, Zhang H M, Wei C L, Yang M H, Liu Z Q, Ren W 2011 Int. J. Mod. Phys. B 25 3977

    [15]

    Jia B, Gu H G 2012 Cogn. Neurodyn. 6 485

    [16]

    Xie Y, Xu J X, Kang Y M, Hu S J, Duan Y B 2004 Chin. Phys. 13 1396

    [17]

    Tateno T, Harsch A, Robinson H 2004 J. Neurophysiol. 92 2283

    [18]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [19]

    FitzHugh R 1961 Biophys. J. 1 445

    [20]

    Gu H G, Xi L, Jia B 2012 Acta Phys. Sin. 61 080504 (in Chinese) [古华光, 惠磊, 贾冰 2012 物理学报 61 080504]

    [21]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2003 Int. J. Mod. Phys. B 17 4195

    [22]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2003 Phys. Lett. A 319 89

    [23]

    Zeng L Z, Xu B H 2010 Physica A 22 5128

    [24]

    Gu H G, Zhu Z, Jia B 2011 Acta Phys. Sin. 60 100505 (in Chinese) [古华光, 朱洲, 贾冰 2011 物理学报 60 100505]

    [25]

    Zhang Y, Hu G, Gammaitoni L 1998 Phys. Rev. E 58 2952

    [26]

    Liu W, Zhu W, Huang Z 2001 Chaos Soliton. Fract. 12 527

    [27]

    Demir A, Mehrotra A, Roychowdhury J 2000 IEEE Trans. Circuits Syst. 47 655

    [28]

    Xi L X, Li J P, Du S C, Xu X, Zhao X G 2011 Chin. Phys. B 20 024214

    [29]

    Chen W, Meng Z, Zhou H J, Luo H 2012 Chin. Phys. B 21 034212

    [30]

    Ma Y X, Xi L X, Chen G, Zhang X G 2012 Chin. Phys. B 21 064222

    [31]

    Kang X S, Liang X M, Lu H P 2013 Chin. Phys. Lett. 30 018701

    [32]

    Liang X M, Zhao L, Liu Z H 2011 Phys. Rev. E 84 031916

    [33]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [34]

    Tateno T, Pakdaman K 2004 Chaos 14 511

    [35]

    Tsumoto K, Kitajima H, Yoshinaga T, Aihara K, Kawakami H 2006 Neurocomputing 69 293

    [36]

    Li Y Y, Zhang H M, Wei C L, Yang M H, Gu H G, Ren W 2009 Chin. Phys. Lett. 26 030504

    [37]

    Liu Z Q, Zhang H M, Li Y Y, Hua C C, Gu H G, Ren W 2010 Physica A 389 2642

    [38]

    Li Y Y, Jia B, Gu H G 2012 Acta Phys. Sin. 61 070504 (in Chinese) [李玉叶, 贾冰, 古华光 2012 物理学报 61 070504]

    [39]

    Gu H G, Jia B, Lu Q S 2011 Cogn. Neurodyn. 5 87

    [40]

    Xie Y, Xu J X, Hu S J 2004 Chaos Soliton. Fract. 21 177

  • [1] 项晓, 王少锋, 侯飞雁, 权润爱, 翟艺伟, 王盟盟, 周聪华, 许冠军, 董瑞芳, 刘涛, 张首刚. 利用共振无源腔分析和抑制飞秒脉冲激光噪声的理论和实验研究. 物理学报, 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [2] 陆金波, 侯晓荣, 罗敏. 一类Hopf分岔系统的通用鲁棒稳定控制器设计方法. 物理学报, 2016, 65(6): 060502. doi: 10.7498/aps.65.060502
    [3] 张妩帆, 赵强. 太阳强迫厄尔尼诺/南方涛动充电振子模型的Hopf分岔与混沌. 物理学报, 2014, 63(21): 210201. doi: 10.7498/aps.63.210201
    [4] 张玲梅, 张建文, 吴润衡. 具有对应分段系统和指数系统的新混沌系统的Hopf分岔控制研究. 物理学报, 2014, 63(16): 160505. doi: 10.7498/aps.63.160505
    [5] 毕闯, 张千, 向勇, 王京梅. 二维正弦离散映射的分岔和吸引子. 物理学报, 2013, 62(24): 240503. doi: 10.7498/aps.62.240503
    [6] 李晓静, 陈绚青, 严静. 一类具时滞的厄尔尼诺-南方涛动充电-放电振子模型的Hopf分岔与周期解问题. 物理学报, 2013, 62(16): 160202. doi: 10.7498/aps.62.160202
    [7] 崔岩, 刘素华, 葛晓陵. Langford系统Hopf分岔极限环幅值控制. 物理学报, 2012, 61(10): 100202. doi: 10.7498/aps.61.100202
    [8] 赵洪涌, 陈凌, 于小红. 一类惯性神经网络的分岔与控制. 物理学报, 2011, 60(7): 070202. doi: 10.7498/aps.60.070202
    [9] 马少娟. 一类随机van der Pol系统的Hopf 分岔研究. 物理学报, 2011, 60(1): 010502. doi: 10.7498/aps.60.010502
    [10] 吴志强, 孙立明. 基于Washout滤波器的Rössler系统Hopf分岔控制. 物理学报, 2011, 60(5): 050504. doi: 10.7498/aps.60.050504
    [11] 马伟, 王明渝, 聂海龙. 单周期控制Boost变换器Hopf分岔控制及电路实现. 物理学报, 2011, 60(10): 100202. doi: 10.7498/aps.60.100202
    [12] 张立森, 蔡理, 冯朝文. 线性延时反馈Josephson结的Hopf分岔和混沌化. 物理学报, 2011, 60(6): 060306. doi: 10.7498/aps.60.060306
    [13] 刘爽, 刘彬, 张业宽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性. 物理学报, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [14] 刘爽, 刘浩然, 闻岩, 刘彬. 一类耦合非线性相对转动系统的Hopf分岔控制. 物理学报, 2010, 59(8): 5223-5228. doi: 10.7498/aps.59.5223
    [15] 刘志宏, 周玉荣, 张安英, 庞小峰. 色关联噪声驱动下非线性神经元模型的相干共振. 物理学报, 2010, 59(2): 699-704. doi: 10.7498/aps.59.699
    [16] 刘爽, 刘彬, 时培明. 一类相对转动系统Hopf分岔的非线性反馈控制. 物理学报, 2009, 58(7): 4383-4389. doi: 10.7498/aps.58.4383
    [17] 张 青, 王杰智, 陈增强, 袁著祉. 共轭Chen混沌系统的分岔分析及基于该系统的超混沌生成研究. 物理学报, 2008, 57(4): 2092-2099. doi: 10.7498/aps.57.2092
    [18] 王作雷. 一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性. 物理学报, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [19] 刘素华, 唐驾时. 四维Qi系统零平衡点的Hopf分岔反控制. 物理学报, 2008, 57(10): 6162-6168. doi: 10.7498/aps.57.6162
    [20] 易 鸣, 贾 亚, 刘 泉, 詹 璇. 生物钟基因网络中分子噪声诱导的日夜节律振荡及相干共振. 物理学报, 2008, 57(1): 621-627. doi: 10.7498/aps.57.621
计量
  • 文章访问数:  6083
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-04
  • 修回日期:  2014-08-08
  • 刊出日期:  2014-12-05

/

返回文章
返回