搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维正弦离散映射的分岔和吸引子

毕闯 张千 向勇 王京梅

引用本文:
Citation:

二维正弦离散映射的分岔和吸引子

毕闯, 张千, 向勇, 王京梅

Bifurcation and attractor of two-dimensional sinusoidal discrete map

Bi Chuang, Zhang Qian, Xiang Yong, Wang Jing-Mei
PDF
导出引用
  • 由一个正弦映射和一个三次方映射通过非线性耦合,构成一个新的二维正弦离散映射. 基于此二维正弦离散映射得到系统的不动点以及相应的特征值,分析了系统的稳定性,研究了系统的复杂非线性动力学行为及其吸引子的演变过程. 研究结果表明:此二维正弦离散映射中存在复杂的对称性破缺分岔、Hopf分岔、倍周期分岔和周期振荡快慢效应等非线性物理现象. 进一步根据控制变量变化时系统的分岔图、Lyapunov指数图和相轨迹图分析了系统的分岔模式共存、快慢周期振荡及其吸引子的演变过程,通过数值仿真验证了理论分析的正确性.
    A new two-dimensional sinusoidal discrete map is achieved by nonlinearly coupling a sinusoidal map and with a cubic map. The fixed points and the corresponding eigenvalues are obtained based on this two-dimensional sinusoidal discrete map, and the stability of the system is analyzed to study the complex nonlinear dynamic behavior of the system and the evolutions of their attractors. The research results indicate that there are complex nonlinear physical phenomena in this two-dimensional sinusoidal discrete map, such as symmetry breaking bifurcation, Hopf bifurcation, period doubling bifurcation, periodic oscillation fast-slow effect, etc. Furthermore, bifurcation mode coexisting, fast-slow periodic oscillations and the evolutions of the attractors of the system are analyzed by using the bifurcation diagram, the Lyapunov exponent diagram and the phase portraits when the control parameters of the system are varied, and the correctness of the theoretical analysis is verified based on numerical simulations.
    • 基金项目: 电子薄膜与集成器件国家重点实验室基础研究开放创新基金(批准号:CXJJ2010001)资助的课题.
    • Funds: Project supported by the Open Innovation Fund for Basic Research of State Key Laboratory of Electronic Thin Films and Integrated Devices, China (Grant No. CXJJ2010001).
    [1]

    Ma T D, Fu J, Sun Y 2010 Chin. Phys. B 19 090502

    [2]

    Zhang H G, Fu J, Ma T D, Tong S C 2009 Chin. Phys. B 18 969

    [3]

    Parui S, Banerjee S 2003 IEEE Trans. Circuits Syst. I 50 1464

    [4]

    Yan H, Wei P, Xiao X C 2010 Chin. Phys. B 19 090501

    [5]

    Yan H, Wei P, Xiao X C 2009 Chin. Phys. B 18 3287

    [6]

    Van Ha N, Han J S 2013 Chin. Phys. Lett. 30 060501

    [7]

    Wu J, Zhan X S, Zhang X H, Gao H L 2012 Chin. Phys. Lett. 29 050203

    [8]

    Namajunas A, Pyragas K, Tamasevicius A 1997 Int. J. Bifurc. Chaos 7 957

    [9]

    Wu X, Tse C K, Dranga O, Lu J 2006 IEEE Trans. Circuits Syst. I 53 204

    [10]

    Yang R, Zhang B 2007 Chin. Soc. Elec. Eng. 27 114 (in Chinese) [杨汝, 张波 2007 中国电机工程学报 27 114]

    [11]

    Xu J, Long K P, Fournier-Prunaret D, Taha A K, Charge P 2010 Chin. Phys. Lett. 27 020504

    [12]

    Xu J, Long K P, Fournier-Prunaret D, Taha A K, Charge P 2010 Chin. Phys. Lett. 27 080506

    [13]

    Boyland P L 1986 Comm. Math. Phys. 106 353

    [14]

    Lalescu C C 2010 Arxiv preprint arXiv 1011 6552

    [15]

    Hu W, Zhao G H, Zhang G, Zhang J Q, Liu X L 2012 Acta Phys. Sin. 61 170505 (in Chinese) [胡文, 赵广浩, 张弓, 张景乔, 刘贤龙 2012 物理学报 61 170505]

    [16]

    Zhang H, Chu Y D, Ding W C, Li X F 2013 Acta Phys. Sin. 62 040202 (in Chinese) [张惠, 褚衍东, 丁旺才, 李险峰 2013 物理学报 62 040202]

    [17]

    Bao B C, Kang Z S, Xu J P, Hu W 2009 Acta Phys. Sin. 58 1420 (in Chinese) [包伯成, 康祝圣, 许建平, 胡文 2009 物理学报 58 1420]

    [18]

    Meng J D, Bao B C, Xu Q 2011 Acta Phys. Sin. 60 010504 (in Chinese) [孟继德, 包伯成, 徐强 2011 物理学报 60 010504]

    [19]

    Edward O 2002 Chaos in Dynamical System (Cambridge: Cambridge University Press) p50

    [20]

    Zhou G H, Xu J P, Bao B C, Zhang F, Liu X S 2010 Chin. Phys. Lett. 27 090504

  • [1]

    Ma T D, Fu J, Sun Y 2010 Chin. Phys. B 19 090502

    [2]

    Zhang H G, Fu J, Ma T D, Tong S C 2009 Chin. Phys. B 18 969

    [3]

    Parui S, Banerjee S 2003 IEEE Trans. Circuits Syst. I 50 1464

    [4]

    Yan H, Wei P, Xiao X C 2010 Chin. Phys. B 19 090501

    [5]

    Yan H, Wei P, Xiao X C 2009 Chin. Phys. B 18 3287

    [6]

    Van Ha N, Han J S 2013 Chin. Phys. Lett. 30 060501

    [7]

    Wu J, Zhan X S, Zhang X H, Gao H L 2012 Chin. Phys. Lett. 29 050203

    [8]

    Namajunas A, Pyragas K, Tamasevicius A 1997 Int. J. Bifurc. Chaos 7 957

    [9]

    Wu X, Tse C K, Dranga O, Lu J 2006 IEEE Trans. Circuits Syst. I 53 204

    [10]

    Yang R, Zhang B 2007 Chin. Soc. Elec. Eng. 27 114 (in Chinese) [杨汝, 张波 2007 中国电机工程学报 27 114]

    [11]

    Xu J, Long K P, Fournier-Prunaret D, Taha A K, Charge P 2010 Chin. Phys. Lett. 27 020504

    [12]

    Xu J, Long K P, Fournier-Prunaret D, Taha A K, Charge P 2010 Chin. Phys. Lett. 27 080506

    [13]

    Boyland P L 1986 Comm. Math. Phys. 106 353

    [14]

    Lalescu C C 2010 Arxiv preprint arXiv 1011 6552

    [15]

    Hu W, Zhao G H, Zhang G, Zhang J Q, Liu X L 2012 Acta Phys. Sin. 61 170505 (in Chinese) [胡文, 赵广浩, 张弓, 张景乔, 刘贤龙 2012 物理学报 61 170505]

    [16]

    Zhang H, Chu Y D, Ding W C, Li X F 2013 Acta Phys. Sin. 62 040202 (in Chinese) [张惠, 褚衍东, 丁旺才, 李险峰 2013 物理学报 62 040202]

    [17]

    Bao B C, Kang Z S, Xu J P, Hu W 2009 Acta Phys. Sin. 58 1420 (in Chinese) [包伯成, 康祝圣, 许建平, 胡文 2009 物理学报 58 1420]

    [18]

    Meng J D, Bao B C, Xu Q 2011 Acta Phys. Sin. 60 010504 (in Chinese) [孟继德, 包伯成, 徐强 2011 物理学报 60 010504]

    [19]

    Edward O 2002 Chaos in Dynamical System (Cambridge: Cambridge University Press) p50

    [20]

    Zhou G H, Xu J P, Bao B C, Zhang F, Liu X S 2010 Chin. Phys. Lett. 27 090504

  • [1] 李桑丫, 张艾霖, 徐欣, 吕涛, 王世康, 罗箐. 基于强流离子源的离子束溅射镀膜设备均匀性优化. 物理学报, 2024, 73(5): 058101. doi: 10.7498/aps.73.20231491
    [2] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [3] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学. 物理学报, 2022, 71(7): 074207. doi: 10.7498/aps.70.20220270
    [4] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [5] 曹春蕾, 徐进良, 叶文力. 周期性爆沸诱导的液滴自驱动. 物理学报, 2021, 70(24): 244703. doi: 10.7498/aps.70.20211386
    [6] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211549
    [7] 胡伟达, 李庆, 陈效双, 陆卫. 具有变革性特征的红外光电探测器. 物理学报, 2019, 68(12): 120701. doi: 10.7498/aps.68.20190281
    [8] 武瑞琪, 郭迎春, 王兵兵. SF6分子最高占据轨道对称性的判断. 物理学报, 2019, 68(8): 080201. doi: 10.7498/aps.68.20182231
    [9] 丁学利, 贾冰, 李玉叶. 利用相位响应曲线解释抑制性反馈增强神经电活动. 物理学报, 2019, 68(18): 180502. doi: 10.7498/aps.68.20190197
计量
  • 文章访问数:  5802
  • PDF下载量:  864
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-18
  • 修回日期:  2013-09-27
  • 刊出日期:  2013-12-05

/

返回文章
返回