搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

噪声环境下时滞耦合网络的广义投影滞后同步

张丽 杨晓丽 孙中奎

引用本文:
Citation:

噪声环境下时滞耦合网络的广义投影滞后同步

张丽, 杨晓丽, 孙中奎

Generalized projective lag synchronization between delay-coupled networks under circumstance noise

Zhang Li, Yang Xiao-Li, Sun Zhong-Kui
PDF
导出引用
  • 时滞和噪声在复杂网络中普遍存在,而含有耦合时滞和噪声摄动的耦合网络同步的研究工作却极其稀少. 本文针对噪声环境下具有不同节点动力学、不同拓扑结构及不同节点数目的耦合时滞网络,提出了两个网络之间的广义投影滞后同步. 首先,构建了更加贴近现实的驱动-响应网络同步的理论框架;其次,基于随机时滞微分方程LaSalle不变性原理,严格证明了在合理的控制器作用下,驱动网络和响应网络在几乎必然渐近稳定性意义下能够取得广义投影滞后同步;最后,借助于计算机仿真,通过具体的网络模型验证了理论推理的有效性. 数值模拟结果表明,驱动网络与响应网络不但能够达到广义投影滞后同步,而且同步效果不依赖于耦合时滞和比例因子的选取,同时也揭示了更新增益和耦合时滞对同步收敛速度的显著性影响.
    It is well known that time delay and random noise are universal in complex networks. However, the research on the synchronization of coupled networks that are subjected to delay-coupling and noise perturbation is very rare. In this paper, for two delay-coupled complex networks with different node dynamics, different topological structures and different numbers of nodes, under circumstance noise, the generalized projective lag synchronization between two networks is proposed for the first time. First, a more realistic theoretical framework is constructed for the drive-response network synchronization. Second, according to the LaSalle-type theorem for stochastic differential delay equations, we rigorously prove that the generalized projective lag synchronization between the drive-response networks can be achieved almost surely, by introducing an appropriate controller. Furthermore, numerical simulation is employed to verify the theoretical analysis. The results indicate that the drive-response networks can indeed achieve generalized projective lag synchronization, and that the synchronization is independent of time delay and scaling factor. Moreover, the remarkable influences of the update gain and the coupling delay on synchronization speed are revealed through the numerical results.
    • 基金项目: 国家自然科学基金(批准号:11272258,11172342)和中央高校基本科研业务费 (批准号:GK201302001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272258, 11172342) and the Fundamental Research Fund for the Central Universities, China (Grant No. GK201302001).
    [1]

    Huygens C 1669 Instructions Concerning the Use of Pendulum-Watches for Finding the Longitude at Sea 4 (London: Philos. Trans. R. Soc.) p937

    [2]

    Boccaletti S, Kurths J, Osipov G, Valladares D L, Zhou C S 2002 Phys. Rep. 366 1

    [3]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [4]

    Barabási A L, Albert R 1999 Science 286 509

    [5]

    Luo Q, Wu W, Li L X, Yang Y X, Peng H P 2008 Acta Phys. Sin. 57 1529 (in Chinese) [罗群, 吴薇, 李丽香, 杨义先, 彭海朋 2008 物理学报 57 1529]

    [6]

    Jing X D, L L 2009 Acta Phys. Sin. 58 7539 (in Chinese) [敬晓丹, 吕翎 2009 物理学报 58 7539]

    [7]

    Li Y, L L, Luan L 2009 Acta Phys. Sin. 58 4463 (in Chinese) [李岩, 吕翎, 栾玲 2009 物理学报 58 4463]

    [8]

    L L, Zhang C 2009 Acta Phys. Sin. 58 1462 (in Chinese) [吕翎, 张超 2009 物理学报 58 1462]

    [9]

    Liu J G 2012 Chin. Phys. B 21 129506

    [10]

    Arenas A, Guilera A, Kurths J, Moreno Y, Zhou C S 2008 Phys. Rep. 469 93

    [11]

    Chen G R, Wang X F, Li X, L J H 2009 Some Recent Advances in Complex Networks Synchronization (Berlin Heidelberg: Springer-Verlag) pp3–16

    [12]

    Li C P, Sun W G, Kurths J 2007 Phys. Rev. E 76 046204

    [13]

    Wu X J, Lu H T 2010 Chin. Phys. B 19 070511

    [14]

    Tang H W, Chen L, Lu J A, Tse C K 2008 Physica A 387 5623

    [15]

    Li Y, Liu Z R, Zhang J B 2008 Chin. Phys. Lett. 25 874

    [16]

    Sun M, Zeng C Y, Tian L X 2010 Commun. Nonlinear Sci. Numer. Simul. 15 2162

    [17]

    Wu X Q, Zheng W X, Zhou J 2009 Chaos 19 013109

    [18]

    Wu Y Q, Li C P, Wu Y J, Kurths J 2012 Commun. Nonlinear Sci. Numer. Simul. 17 349

    [19]

    Zheng S, Bi Q S, Cai G L 2009 Phys. Lett. A 373 1553

    [20]

    Sun M, Zeng C Y, Tian L X 2009 Chin. Phys. Lett. 26 010501

    [21]

    Wu X J, Lu H T 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3005

    [22]

    Dai H, Jia L X, Zhang Y B 2012 Chin. Phys. B 21 120508

    [23]

    Yang Z Q, Zhang Q, Chen Z Q 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2628

    [24]

    Chen J R, Jiao L C, Wu J S, Wang X H 2009 Chin. Phys. Lett. 26 060505

    [25]

    Wu X J, Lu H T 2010 Phys. Lett. A 374 3932

    [26]

    Maritan A, Banavar J R 1994 Phys. Rev. Lett. 72 1451

    [27]

    Zhou C S, Kurths J 2002 Phys. Rev. Lett. 88 230602

    [28]

    Yang X L, Xu W, Sun Z K 2006 Phys. Lett. A 353 179

    [29]

    Guan S G, Lai Y C, Lai C H 2006 Phys. Rev. E 73 046210

    [30]

    Yang X L, Xu W 2008 Chin. Phys. B 17 2004

    [31]

    Lin W, Chen G R 2006 Chaos 16 013134

    [32]

    Xiao Y Z, Tang S F, Xu Y Chaos 22 013110

    [33]

    Sun Z K, Yang X L 2011 Chaos 21 033114

    [34]

    Wang G J, Cao J D, Lu J Q 2010 Physica A 389 1480

    [35]

    Cao L, Ma Y 2012 Int. J. Nonlinear Sci. 13 373

    [36]

    Sun Y Z, Li W, Ruan J 2013 Commun. Nonlinear Sci. Numer. Simul. 18 989

    [37]

    Arnold L 1972 Stochastic Differential Equation and Applications (New York: Wiley)

    [38]

    Friedman A 1975 Stochastic Differential Equations and Applications (New York: Academic Press)

    [39]

    Shen Y, Luo Q, Mao X R 2006 J. Math. Appl. 318 134

    [40]

    Mao X R 2002 J. Math. Appl. 268 125

  • [1]

    Huygens C 1669 Instructions Concerning the Use of Pendulum-Watches for Finding the Longitude at Sea 4 (London: Philos. Trans. R. Soc.) p937

    [2]

    Boccaletti S, Kurths J, Osipov G, Valladares D L, Zhou C S 2002 Phys. Rep. 366 1

    [3]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [4]

    Barabási A L, Albert R 1999 Science 286 509

    [5]

    Luo Q, Wu W, Li L X, Yang Y X, Peng H P 2008 Acta Phys. Sin. 57 1529 (in Chinese) [罗群, 吴薇, 李丽香, 杨义先, 彭海朋 2008 物理学报 57 1529]

    [6]

    Jing X D, L L 2009 Acta Phys. Sin. 58 7539 (in Chinese) [敬晓丹, 吕翎 2009 物理学报 58 7539]

    [7]

    Li Y, L L, Luan L 2009 Acta Phys. Sin. 58 4463 (in Chinese) [李岩, 吕翎, 栾玲 2009 物理学报 58 4463]

    [8]

    L L, Zhang C 2009 Acta Phys. Sin. 58 1462 (in Chinese) [吕翎, 张超 2009 物理学报 58 1462]

    [9]

    Liu J G 2012 Chin. Phys. B 21 129506

    [10]

    Arenas A, Guilera A, Kurths J, Moreno Y, Zhou C S 2008 Phys. Rep. 469 93

    [11]

    Chen G R, Wang X F, Li X, L J H 2009 Some Recent Advances in Complex Networks Synchronization (Berlin Heidelberg: Springer-Verlag) pp3–16

    [12]

    Li C P, Sun W G, Kurths J 2007 Phys. Rev. E 76 046204

    [13]

    Wu X J, Lu H T 2010 Chin. Phys. B 19 070511

    [14]

    Tang H W, Chen L, Lu J A, Tse C K 2008 Physica A 387 5623

    [15]

    Li Y, Liu Z R, Zhang J B 2008 Chin. Phys. Lett. 25 874

    [16]

    Sun M, Zeng C Y, Tian L X 2010 Commun. Nonlinear Sci. Numer. Simul. 15 2162

    [17]

    Wu X Q, Zheng W X, Zhou J 2009 Chaos 19 013109

    [18]

    Wu Y Q, Li C P, Wu Y J, Kurths J 2012 Commun. Nonlinear Sci. Numer. Simul. 17 349

    [19]

    Zheng S, Bi Q S, Cai G L 2009 Phys. Lett. A 373 1553

    [20]

    Sun M, Zeng C Y, Tian L X 2009 Chin. Phys. Lett. 26 010501

    [21]

    Wu X J, Lu H T 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3005

    [22]

    Dai H, Jia L X, Zhang Y B 2012 Chin. Phys. B 21 120508

    [23]

    Yang Z Q, Zhang Q, Chen Z Q 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2628

    [24]

    Chen J R, Jiao L C, Wu J S, Wang X H 2009 Chin. Phys. Lett. 26 060505

    [25]

    Wu X J, Lu H T 2010 Phys. Lett. A 374 3932

    [26]

    Maritan A, Banavar J R 1994 Phys. Rev. Lett. 72 1451

    [27]

    Zhou C S, Kurths J 2002 Phys. Rev. Lett. 88 230602

    [28]

    Yang X L, Xu W, Sun Z K 2006 Phys. Lett. A 353 179

    [29]

    Guan S G, Lai Y C, Lai C H 2006 Phys. Rev. E 73 046210

    [30]

    Yang X L, Xu W 2008 Chin. Phys. B 17 2004

    [31]

    Lin W, Chen G R 2006 Chaos 16 013134

    [32]

    Xiao Y Z, Tang S F, Xu Y Chaos 22 013110

    [33]

    Sun Z K, Yang X L 2011 Chaos 21 033114

    [34]

    Wang G J, Cao J D, Lu J Q 2010 Physica A 389 1480

    [35]

    Cao L, Ma Y 2012 Int. J. Nonlinear Sci. 13 373

    [36]

    Sun Y Z, Li W, Ruan J 2013 Commun. Nonlinear Sci. Numer. Simul. 18 989

    [37]

    Arnold L 1972 Stochastic Differential Equation and Applications (New York: Wiley)

    [38]

    Friedman A 1975 Stochastic Differential Equations and Applications (New York: Academic Press)

    [39]

    Shen Y, Luo Q, Mao X R 2006 J. Math. Appl. 318 134

    [40]

    Mao X R 2002 J. Math. Appl. 268 125

  • [1] 杨春林. 散斑场的随机波数及其参量非线性效应. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231235
    [2] 陈浩宇, 徐涛, 刘闯, 张子柯, 詹秀秀. 基于高阶信息的网络相似性比较方法研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231096
    [3] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [4] 宋峰峰, 张广铭. 拓扑激发驱动的热力学相变及其张量网络研究方法. 物理学报, 2023, 72(23): 230301. doi: 10.7498/aps.72.20231152
    [5] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [6] 梁艳美, 陆博, 古华光. 利用双慢变量的快慢变量分离分析新脑皮层神经元Wilson模型的复杂电活动. 物理学报, 2022, 71(23): 230502. doi: 10.7498/aps.71.20221416
    [7] 郑健捷, 朱文越, 刘强, 马宏亮, 刘锟, 钱仙妹, 陈杰, 杨韬. 1 μm波段水分子吸收光谱双光程同步测量方法研究. 物理学报, 2021, 70(16): 163301. doi: 10.7498/aps.70.20210100
    [8] 钟东洲, 曾能, 杨华, 徐喆. 外部光注入的光泵浦自旋垂直腔表面发射激光器中的两个混沌偏振分量对两个复杂形状目标中的多区域精确测距. 物理学报, 2021, 70(7): 074206. doi: 10.7498/aps.70.20201693
    [9] 李风华, 王翰卓. 利用随机多项式展开的海底声学参数反演方法. 物理学报, 2021, 70(17): 174305. doi: 10.7498/aps.70.20210119
    [10] 刘海芳, 张建国, 龚利爽, 王云才. 基于逻辑器件响应特性的自治布尔网络调控. 物理学报, 2021, 70(5): 050502. doi: 10.7498/aps.70.20201249
    [11] 刘奇, 李璞, 开超, 胡春强, 蔡强, 张建国, 徐兵杰. 基于时延光子储备池计算的混沌激光短期预测. 物理学报, 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355
    [12] 彭皓, 任芮彬, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211272
    [13] 徐翔, 朱承, 朱先强. 一种基于离散数据从局部到全局的网络重构算法. 物理学报, 2021, 70(8): 088901. doi: 10.7498/aps.70.20201756
    [14] 王凤阳, 胡仁志, 谢品华, 王怡慧, 陈浩, 张国贤, 刘文清. 基于同步光解的OH自由基标定方法. 物理学报, 2020, 69(9): 090701. doi: 10.7498/aps.69.20200153
    [15] 华洪涛, 陆博, 古华光. 兴奋性自突触引起神经簇放电频率降低或增加的非线性机制. 物理学报, 2020, 69(9): 090502. doi: 10.7498/aps.69.20191709
    [16] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测. 物理学报, 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [17] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
计量
  • 文章访问数:  4447
  • PDF下载量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-11
  • 修回日期:  2013-09-19
  • 刊出日期:  2013-12-05

/

返回文章
返回