搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时滞耦合映像格子的多耦合边耦合网络级联抗毁性研究

彭兴钊 姚宏 杜军 丁超 张志浩

引用本文:
Citation:

基于时滞耦合映像格子的多耦合边耦合网络级联抗毁性研究

彭兴钊, 姚宏, 杜军, 丁超, 张志浩

Study on cascading invulnerability of multi-coupling-links coupled networks based on time-delay coupled map lattices model

Peng Xing-Zhao, Yao Hong, Du Jun, Ding Chao, Zhang Zhi-Hao
PDF
导出引用
  • 现实中各网络之间的耦合促进了网络间的交流,但也带来了级联故障大范围传播的风险. 考虑到故障的传播一般存在时滞,并且一个节点可能拥有不止一条耦合边的情况,本文构建了基于时滞耦合映像格子的多耦合边无标度耦合网络级联故障模型. 研究表明,对于BA(Barabási-Albert)无标度耦合网络,存在一个阈值hT ≈ 3,当耦合强度小于此阈值时,耦合越强抗毁性越弱;反之,耦合越强抗毁性反而越强. 另外,研究发现时滞对耦合网络的影响不仅仅是延长了故障传播的时间,为采取防护措施争取了时间,而且也对最终故障规模产生了影响,具体地,当层内时滞τ1和层间时滞τ2可取任意值时,当两者成整数倍关系时其最终故障规模将更大. 本文的研究可为构建高抗毁性的耦合网络或提高耦合网络的级联抗毁性提供参考.
    The couplings among different networks facilitate their communications, while at the same time they also bring the risk of enhancing the wide spread of cascading failures to the coupled networks. Given that there is usually the time-delay during the spread of failures and more than one coupling link a node might possess, a cascading failure model for scale-free multi-coupling-link coupled networks is built in this paper, based on time-delay coupled map lattices (CML) model, which may be wider representative than previous models. Our research shows that in BA (Barabási-Albert) scale-free coupled networks, there is a threshold hT ≈ 3: when the coupling strength is bellow this threshold, the stronger coupling strength corresponds to a lower invulnerability; and vice versa, the stronger coupling strength would bring a higher invulnerability. In addition, our studies show that the presence of time-delay not only prolongs the failure spreading time during which measures can be taken to suppress cascading failures, but also has a significant influence on the eventual cascading size, for detail, if intra-layer time-delay τ1 and inter-layer time-delay τ2 can have any values, then the multiples of the two numbers will cause larger cascading size. We hope our research can provide a reference for building high-invulnerable coupled networks or the increase of the invulnerability of the coupled networks.
    • 基金项目: 陕西省自然科学基金(批准号:2012JM8035)资助的课题.
    • Funds: Project supported by the Shaanxi Science Foundation of China (Grant No. 2012JM8035).
    [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabási A L, Albert R 1999 Science 286 509

    [3]

    Liu G, Li Y S 2012 Acta Phys. Sin. 61 108901 (in Chinese)[刘刚, 李永树2012 物理学报61 108901]

    [4]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwanga D U 2006 Phys. Rep. 424 175

    [5]

    Zhao L, Park K, Lai Y C 2004 Phys. Rev. E 70 035101 (R)

    [6]

    Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102

    [7]

    Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104(R)

    [8]

    Wang X F, Xu J 2004 Phys. Rev. E 70 056113

    [9]

    Wang J W 2012 Physica A 391 4004

    [10]

    Wang J W, Rong L L, Zhang L, Zhang Z Z 2008 Physica A 387 6671

    [11]

    Ash J, Newth D 2007 Physica A 380 673

    [12]

    Motter A E 2004 Phys. Rev. Lett. 93 098701

    [13]

    Dou B L, Wang X G, Zhang S Y 2010 Physica A 389 2310

    [14]

    Hu K, Hu T, Tang Y 2010 Chin. Phys. B 19 080206

    [15]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [16]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116

    [17]

    Gao J X, Buldyrev S V, Stanley H E, Havlin S 2012 Nature Physics. 8 40

    [18]

    Li W, Bashan A, Buldyrev S V, Stanley H E, Havlin S 2012 Phys. Rev. Lett. 108 228702

    [19]

    Huang X Q, Shao S, Wang H J, Buldyrev S V, Stanley H E, Havlin S 2013 EPL 101 18002

    [20]

    Brummitt C D, D Souza R M, Leicht E A 2012 PNAS 109 E680

    [21]

    Tan F, Xia Y X, Zhang W P, Jin X Y 2013 EPL 102 28009

    [22]

    Qiu Y Z 2013 Physica A 392 1920

    [23]

    Xu J, Wang X F 2005 Physica A 349 685

    [24]

    Cui D, Gao Z Y, Zhao X M 2008 Chin. Phys. B 17 1703

    [25]

    Cui D, Gao Z Y, Zheng J F 2009 Chin. Phys. B 18 992

    [26]

    Holme P, Kim B J, Yoon C N, Han S K 2002 Phys. Rev. E 65 056109

  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabási A L, Albert R 1999 Science 286 509

    [3]

    Liu G, Li Y S 2012 Acta Phys. Sin. 61 108901 (in Chinese)[刘刚, 李永树2012 物理学报61 108901]

    [4]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwanga D U 2006 Phys. Rep. 424 175

    [5]

    Zhao L, Park K, Lai Y C 2004 Phys. Rev. E 70 035101 (R)

    [6]

    Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102

    [7]

    Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104(R)

    [8]

    Wang X F, Xu J 2004 Phys. Rev. E 70 056113

    [9]

    Wang J W 2012 Physica A 391 4004

    [10]

    Wang J W, Rong L L, Zhang L, Zhang Z Z 2008 Physica A 387 6671

    [11]

    Ash J, Newth D 2007 Physica A 380 673

    [12]

    Motter A E 2004 Phys. Rev. Lett. 93 098701

    [13]

    Dou B L, Wang X G, Zhang S Y 2010 Physica A 389 2310

    [14]

    Hu K, Hu T, Tang Y 2010 Chin. Phys. B 19 080206

    [15]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [16]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116

    [17]

    Gao J X, Buldyrev S V, Stanley H E, Havlin S 2012 Nature Physics. 8 40

    [18]

    Li W, Bashan A, Buldyrev S V, Stanley H E, Havlin S 2012 Phys. Rev. Lett. 108 228702

    [19]

    Huang X Q, Shao S, Wang H J, Buldyrev S V, Stanley H E, Havlin S 2013 EPL 101 18002

    [20]

    Brummitt C D, D Souza R M, Leicht E A 2012 PNAS 109 E680

    [21]

    Tan F, Xia Y X, Zhang W P, Jin X Y 2013 EPL 102 28009

    [22]

    Qiu Y Z 2013 Physica A 392 1920

    [23]

    Xu J, Wang X F 2005 Physica A 349 685

    [24]

    Cui D, Gao Z Y, Zhao X M 2008 Chin. Phys. B 17 1703

    [25]

    Cui D, Gao Z Y, Zheng J F 2009 Chin. Phys. B 18 992

    [26]

    Holme P, Kim B J, Yoon C N, Han S K 2002 Phys. Rev. E 65 056109

  • [1] 陈浩宇, 徐涛, 刘闯, 张子柯, 詹秀秀. 基于高阶信息的网络相似性比较方法研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231096
    [2] 宋峰峰, 张广铭. 拓扑激发驱动的热力学相变及其张量网络研究方法. 物理学报, 2023, 72(23): 230301. doi: 10.7498/aps.72.20231152
    [3] 钱黎明, 孙梦然, 郑改革. α相三氧化钼中各向异性双曲声子极化激元的耦合性质. 物理学报, 2023, 72(7): 077101. doi: 10.7498/aps.72.20222144
    [4] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [5] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [6] 张伟, 万静, 蒙列, 罗曜伟, 郭明瑞. D型光纤与微管耦合的微流控折射率传感器. 物理学报, 2022, 71(21): 210701. doi: 10.7498/aps.71.20221137
    [7] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [8] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [9] 徐翔, 朱承, 朱先强. 一种基于离散数据从局部到全局的网络重构算法. 物理学报, 2021, 70(8): 088901. doi: 10.7498/aps.70.20201756
    [10] 刘海芳, 张建国, 龚利爽, 王云才. 基于逻辑器件响应特性的自治布尔网络调控. 物理学报, 2021, 70(5): 050502. doi: 10.7498/aps.70.20201249
    [11] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211132
    [12] 刘奇, 李璞, 开超, 胡春强, 蔡强, 张建国, 徐兵杰. 基于时延光子储备池计算的混沌激光短期预测. 物理学报, 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355
    [13] 彭皓, 任芮彬, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211272
    [14] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [15] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [16] 张旭, 曹佳慧, 艾保全, 高天附, 郑志刚. 摩擦不对称耦合布朗马达的定向输运. 物理学报, 2020, 69(10): 100503. doi: 10.7498/aps.69.20191961
    [17] 华洪涛, 陆博, 古华光. 兴奋性自突触引起神经簇放电频率降低或增加的非线性机制. 物理学报, 2020, 69(9): 090502. doi: 10.7498/aps.69.20191709
    [18] 胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航. 三维不可压缩流的12速多松弛格子Boltzmann模型. 物理学报, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [19] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测. 物理学报, 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
计量
  • 文章访问数:  4610
  • PDF下载量:  481
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-14
  • 修回日期:  2013-12-13
  • 刊出日期:  2014-04-05

/

返回文章
返回