搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

链式互耦合半导体激光器的实时混沌同步

刘莹莹 潘炜 江宁 项水英 林煜东

引用本文:
Citation:

链式互耦合半导体激光器的实时混沌同步

刘莹莹, 潘炜, 江宁, 项水英, 林煜东

Isochronal chaos synchronization of a chain mutually coupled semiconductor lasers

Liu Ying-Ying, Pan Wei, Jiang Ning, Xiang Shui-Ying, Lin Yu-Dong
PDF
导出引用
  • 通过在互耦合外腔半导体激光器之间增加中继激光器, 建立了一种链式互耦合半导体激光器混沌同步系统模型. 理论分析了系统的实时混沌同步条件, 数值研究了注入电流、互耦合条件、反馈条件等对系统实时混沌同步品质的影响, 揭示了同步质量在反馈强度和互耦合强度二维参数空间的分布规律. 结果表明: 注入电流较大时, 满足互耦合强度和反馈强度相同,互耦合延时和反馈延时相等, 系统中所有激光器之间可同时实现稳定高品质实时混沌同步; 中心激光器和边激光器之间的稳定实时混沌同步分布在在互耦合强度和反馈强度较小的区域 以及互耦合强度和反馈强度相近的区域; 边激光器之间由于同时接收到中心激光器实施的相同注入, 能够较容易的实现稳定高品质的实时混沌同步. 该系统可进一步扩展成为实现远距离的双向实时混沌同步或阵列激光器系统的实时混沌同步.
    In this paper, a chaotic synchronization system model of a chain mutually coupled semiconductor lasers is established by adding a relay laser between the mutually coupled semiconductor lasers with cavity. The isochronal chaos synchronization condition is theoretically analysed. The influences of injection current, mutual coupling strength and feedback strength on isochronal chaos synchronization are numerically studied. The distributions of synchronous quality in the two-dimensional parameter space for mutual coupling strength and feedback strength are revealed. We show that when the injection current is big enough and the mutual coupling conditions and feedback conditions are completely the same, the stable isochronal chaos synchronization with high quality can be obtained among all the lasers. Stable isochronal chaos synchronization between central laser and side laser is distributed in the area when both mutual coupling strength and feedback strength are small or similar. Two side lasers can easily achieve the stable isochronal chaos synchronization with high quality, because they receive the same injection from central laser at the same time. The system model can be further expanded into the realizing of remote two-way isochronal chaos synchronization or the isochronal chaos synchronization of the arrayed semiconductor laser system.
    • 基金项目: 国家自然科学基金(批准号: 60976039, 61274042) 和四川省基础研究项目(批准号: 2011JY0030)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60976039, 61274042), and the Basic Research Program of Sichuan Province, China (Grant No. 2011JY0030).
    [1]

    Pecora L M, Carroll T L 1990 Phys.Rev.Lett. 64 821

    [2]

    Ning J, Wei P, Lianshan Y, Bin L, Shuiying X, Lei Y, Di Z, Nianqiang L 2011 J. Opt. Soc. Am. B 28 1139

    [3]

    Ding L, Wu Z M, Wu J G, Xia G Q 2012 Acta Phys. Sin. 61 014212 (in Chinese) [丁灵, 吴正茂, 吴加贵, 夏光琼 2012 物理学报 61 014212]

    [4]

    Wang Y C, Li Y L, Wang A B, Wang B J, Zhang G W, Guo P 2007 Acta Phys. Sin. 56 4686 (in Chinese) [王云才, 李艳丽, 王安邦, 王冰洁, 张耕玮, 郭萍 2007 物理学报 56 4686]

    [5]

    Li X F, Pan W, Ma D, Luo B, Zhang W L, Xiong Y 2006 Acta Phys. Sin. 55 5094 (in Chinese) [李孝峰, 潘炜, 马冬, 罗斌, 张伟利, 熊悦 2006 物理学报 55 5094]

    [6]

    Liu Y R, Wu Z M, Wu J G, Li P, Xia G Q 2012 Acta Phys. Sin. 61 024203 (in Chinese) [刘宇然, 吴正茂, 吴加贵, 李萍, 夏光琼 2012 物理学报 61 024203]

    [7]

    He Y, Deng T, Wu Z M, Liu Y Y, Xia G Q 2011 Acta Phys. Sin. 60 044204 (in Chinese) [何元, 邓涛, 吴正茂, 刘元元, 夏光琼 2011 物理学报 60 044204]

    [8]

    Kanter I, Kopelowitz E, Kinzel W 2008 Phys. Rev. Lett. 101 084102

    [9]

    Klein E, Gross N, Kopelowitz E 2006 Phys. Rev. E 74 046201

    [10]

    Klein E, Gross N, Rosenbluh M 2006 Phys. Rev. 73 066214

    [11]

    Ning J, Wei P, Bin L, Lianshan Y, Shuiying X, Lei Y, Di Z, Nianqiang L 2010 Phys. Rev. E 81 066217

    [12]

    Englert A, Kinzel W, Aviad Y, Butkovski M, Reidler I, Zigzag M, Kanter I, Rosenbluh M 2010 Phys. Rev. Lett. 104 114102

    [13]

    L L, Li G, Meng L, Yang M, Guo L, Zou J R, Li C Q, Chai Y 2010 Chinese J. Lasers 37 2533 (in Chinese) [吕翎, 李钢, 孟乐, 杨明, 郭丽, 邹家蕊, 李春清, 柴元 2010 中国激光 37 2533]

    [14]

    Yan S L, Wang S Q 2006 Acta Phys. Sin. 55 1687 (in Chinese) [颜森林, 汪胜前 2006 物理学报 55 1687]

    [15]

    Lee M W, Paul J, Masoller C, Shore K A 2006 J. Opt. Soc. Am. B 23 846

    [16]

    Vicente R, Fischer I, Mirasso C R 2008 Phys. Rev. E 78 066202

    [17]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347

    [18]

    Chiang M C, Chen H F, Liu J M 2006 Opt. Commun. 261 86

    [19]

    Ning J, Wei P, Bin L, Lianshan Y, Shuiying X, Lei Y, Di Z, Nianqiang L 2011 Opt. Lett. 36 3197

    [20]

    Vicente R, Dauden J, Colet P 2005 IEEE J. Quantum Electron. 41 541

    [21]

    Heill T, Fischer I, Elsasser W 2001 Phys. Rev. Lett. 86 795

  • [1]

    Pecora L M, Carroll T L 1990 Phys.Rev.Lett. 64 821

    [2]

    Ning J, Wei P, Lianshan Y, Bin L, Shuiying X, Lei Y, Di Z, Nianqiang L 2011 J. Opt. Soc. Am. B 28 1139

    [3]

    Ding L, Wu Z M, Wu J G, Xia G Q 2012 Acta Phys. Sin. 61 014212 (in Chinese) [丁灵, 吴正茂, 吴加贵, 夏光琼 2012 物理学报 61 014212]

    [4]

    Wang Y C, Li Y L, Wang A B, Wang B J, Zhang G W, Guo P 2007 Acta Phys. Sin. 56 4686 (in Chinese) [王云才, 李艳丽, 王安邦, 王冰洁, 张耕玮, 郭萍 2007 物理学报 56 4686]

    [5]

    Li X F, Pan W, Ma D, Luo B, Zhang W L, Xiong Y 2006 Acta Phys. Sin. 55 5094 (in Chinese) [李孝峰, 潘炜, 马冬, 罗斌, 张伟利, 熊悦 2006 物理学报 55 5094]

    [6]

    Liu Y R, Wu Z M, Wu J G, Li P, Xia G Q 2012 Acta Phys. Sin. 61 024203 (in Chinese) [刘宇然, 吴正茂, 吴加贵, 李萍, 夏光琼 2012 物理学报 61 024203]

    [7]

    He Y, Deng T, Wu Z M, Liu Y Y, Xia G Q 2011 Acta Phys. Sin. 60 044204 (in Chinese) [何元, 邓涛, 吴正茂, 刘元元, 夏光琼 2011 物理学报 60 044204]

    [8]

    Kanter I, Kopelowitz E, Kinzel W 2008 Phys. Rev. Lett. 101 084102

    [9]

    Klein E, Gross N, Kopelowitz E 2006 Phys. Rev. E 74 046201

    [10]

    Klein E, Gross N, Rosenbluh M 2006 Phys. Rev. 73 066214

    [11]

    Ning J, Wei P, Bin L, Lianshan Y, Shuiying X, Lei Y, Di Z, Nianqiang L 2010 Phys. Rev. E 81 066217

    [12]

    Englert A, Kinzel W, Aviad Y, Butkovski M, Reidler I, Zigzag M, Kanter I, Rosenbluh M 2010 Phys. Rev. Lett. 104 114102

    [13]

    L L, Li G, Meng L, Yang M, Guo L, Zou J R, Li C Q, Chai Y 2010 Chinese J. Lasers 37 2533 (in Chinese) [吕翎, 李钢, 孟乐, 杨明, 郭丽, 邹家蕊, 李春清, 柴元 2010 中国激光 37 2533]

    [14]

    Yan S L, Wang S Q 2006 Acta Phys. Sin. 55 1687 (in Chinese) [颜森林, 汪胜前 2006 物理学报 55 1687]

    [15]

    Lee M W, Paul J, Masoller C, Shore K A 2006 J. Opt. Soc. Am. B 23 846

    [16]

    Vicente R, Fischer I, Mirasso C R 2008 Phys. Rev. E 78 066202

    [17]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347

    [18]

    Chiang M C, Chen H F, Liu J M 2006 Opt. Commun. 261 86

    [19]

    Ning J, Wei P, Bin L, Lianshan Y, Shuiying X, Lei Y, Di Z, Nianqiang L 2011 Opt. Lett. 36 3197

    [20]

    Vicente R, Dauden J, Colet P 2005 IEEE J. Quantum Electron. 41 541

    [21]

    Heill T, Fischer I, Elsasser W 2001 Phys. Rev. Lett. 86 795

计量
  • 文章访问数:  2848
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-25
  • 修回日期:  2012-08-30
  • 刊出日期:  2013-01-05

链式互耦合半导体激光器的实时混沌同步

  • 1. 西南交通大学信息科学与技术学院, 成都 610031
    基金项目: 

    国家自然科学基金(批准号: 60976039, 61274042) 和四川省基础研究项目(批准号: 2011JY0030)资助的课题.

摘要: 通过在互耦合外腔半导体激光器之间增加中继激光器, 建立了一种链式互耦合半导体激光器混沌同步系统模型. 理论分析了系统的实时混沌同步条件, 数值研究了注入电流、互耦合条件、反馈条件等对系统实时混沌同步品质的影响, 揭示了同步质量在反馈强度和互耦合强度二维参数空间的分布规律. 结果表明: 注入电流较大时, 满足互耦合强度和反馈强度相同,互耦合延时和反馈延时相等, 系统中所有激光器之间可同时实现稳定高品质实时混沌同步; 中心激光器和边激光器之间的稳定实时混沌同步分布在在互耦合强度和反馈强度较小的区域 以及互耦合强度和反馈强度相近的区域; 边激光器之间由于同时接收到中心激光器实施的相同注入, 能够较容易的实现稳定高品质的实时混沌同步. 该系统可进一步扩展成为实现远距离的双向实时混沌同步或阵列激光器系统的实时混沌同步.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回