搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体激光器混沌输出的延时特征和带宽

张依宁 冯玉玲 王晓茜 赵振明 高超 姚治海

引用本文:
Citation:

半导体激光器混沌输出的延时特征和带宽

张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海

Time delay signature and bandwidth of chaotic laser output from semiconductor laser

Zhang Yi-Ning, Feng Yu-Ling, Wang Xiao-Qian, Zhao Zhen-Ming, Gao Chao, Yao Zhi-Hai
PDF
HTML
导出引用
  • 外腔延时特征和带宽是影响混沌激光应用的两个重要参量. 本文将一个单路光反馈的半导体激光器输出的激光部分地注入到另一个双路滤波光反馈的半导体激光器中, 从而构成一个具有外光注入的双路滤波光反馈半导体激光器系统, 即主从激光器系统, 用于抑制混沌激光的延时特征并研究其带宽. 数值研究了外光注入系数、反馈强度、抽运因子和滤波器带宽对系统输出混沌激光的延时特征的影响, 然后将该系统对延时特征的抑制效果和具有外光注入的单路光反馈半导体激光器系统、具有外光注入的双路光反馈半导体激光器系统、具有外光注入的单路滤波光反馈半导体激光器系统以及无光注入双路滤波光反馈半导体激光器系统进行对比和分析, 结果表明本文提出的方案对延时特征的抑制效果最好. 然后在本文提出的具有外光注入的双路滤波光反馈半导体激光器系统中, 延时特征被有效抑制的参数条件下研究系统输出混沌激光的带宽, 结果表明, 通过适当选择参数的取值, 本文提出的方案可以提高系统输出混沌激光的带宽.
    Semiconductor laser (SL) can output chaotic lasers under external disturbances such as optical injection or optical feedback, and the bandwidth can reach up to GHz magnitude. External-cavity feedback semiconductor lasers can output high-dimensional chaotic lasers and are considered to be better sources of chaotic entropy. However, due to external cavity feedback and other effects, it will give rise to obvious external cavity time delay signature (TDS) in the output chaotic laser, which restricts the application of chaotic lasers. On the other hand, the bandwidth of chaotic laser determines the transmission rate of confidential communication, and therefore TDS and bandwidth are two important parameters that will affect chaotic laser’s applications. Therefore, it is significant to take appropriate measures to suppress the TDS and increase the bandwidth of chaotic laser output by semiconductor laser. In this paper the output laser from a semiconductor laser with single optical feedback is partially injected to another semiconductor laser with double filtered optical feedback. Thus they form a semiconductor laser system with external optical injection and double filtered optical feedback, i.e. a master-slave laser system which is used to suppress the TDS of chaotic laser and investigate its bandwidth. We numerically investigate the influences of external light injection coefficient, feedback intensity, pumping factor, and filter bandwidth on TDS. Then the suppression effects of this system on TDS are analyzed and compared with those of semiconductor laser system with external optical injection and single optical feedback, those of semiconductor laser system with external optical injection and double optical feedback, those of semiconductor laser system with external optical injection and single filtered optical feedback, and those of semiconductor laser system with double filtered optical feedback. The results show that the proposed scheme in this paper has the best suppression effect on TDS. Then the bandwidth of the chaotic laser output from the system is investigated under the condition of parameters of effectively suppressing TDS. The results show that the system proposed in this paper can increase the bandwidth of the system output chaotic laser by properly selecting the parametric values, and the maximum bandwidth value of the obtained chaotic laser is about 8.8 GHz. The above investigations indicate the effectiveness of the proposed scheme. The results of this investigation are significant for the application of chaotic lasers.
      通信作者: 冯玉玲, FYLCUST@163.com
    • 基金项目: 省部级-分布反馈半导体激光器输出混沌光的延时特征和带宽的研究(20190201135JC)
      Corresponding author: Feng Yu-Ling, FYLCUST@163.com
    [1]

    Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1995 Phys. Rev. A 51 4181Google Scholar

    [2]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173Google Scholar

    [3]

    Senlin Y 2009 J. Opt. Commun. 30 20Google Scholar

    [4]

    Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243Google Scholar

    [5]

    张明江, 刘铁根, 郑建宇, 王安帮, 王云才 2011 中国激光 4 136Google Scholar

    Zhang M J, Liu T G, Zheng J Y, Wang A B, Wang Y C 2011 Chin. J. Lasers 4 136Google Scholar

    [6]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Yoshimura K 2008 Nat. Photonics 2 728Google Scholar

    [7]

    Metropolis N, Ulam S 1949 J. Am. Stat. Assoc. 44 335Google Scholar

    [8]

    Wang Y, Wang B, Wang A 2008 IEEE Photonics Technol. Lett. 20 1636Google Scholar

    [9]

    Argyris A, Syvridis D, Larger L, Annovazzi V 2005 Nature 438 343Google Scholar

    [10]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815Google Scholar

    [11]

    张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679Google Scholar

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679Google Scholar

    [12]

    Wu J G, Xia G Q, Tang X, Lin X D, Wu Z M 2010 Opt. Express 18 6661Google Scholar

    [13]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018Google Scholar

    [14]

    Udaltsov V S, Goedgebuer J P, Larger L, Vladimir S, Cuenot J, William T, Rhodes 2003 Phys. Lett. E 308 54Google Scholar

    [15]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960Google Scholar

    [16]

    Vicente R, Daudén J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541Google Scholar

    [17]

    Li S S, Chan S C 2015 IEEE J. Quantum Electron. 21 541Google Scholar

    [18]

    孙巍阳, 张胜海, 吴天安, 张晓旭 2017 激光与光电子学进展 54 208Google Scholar

    Sun W Y, Zhang S H, Wu T A, Zhang X X 2017 Las. Optoelect. Prog. 54 208Google Scholar

    [19]

    Schires K, Gomez S, Gallet A, Duan G, Grillot F 2017 IEEE J. Quantum Electron. 99 1Google Scholar

    [20]

    Xu Y P, Zhang L, Lu P, Mihailov S, Chen L, Bao X Y 2018 Opt. Laser Technol. 109 654Google Scholar

    [21]

    Nguimdo R M, Soriano M C, Colet P 2011 Opt. Lett. 36 4322Google Scholar

    [22]

    Zhao A, Jiang N, Liu S 2019 Opt. Express 27 12336Google Scholar

    [23]

    Brunner D, Porte X, Soriano M C, Fischer I 2012 Sci. Rep. 2 732Google Scholar

    [24]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 0Google Scholar

    [25]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124Google Scholar

    [26]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347Google Scholar

    [27]

    卢东, 钟祝强, 夏光琼, 吴正茂 2016 光子学报 45 1014003Google Scholar

    Lu D, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Photon. Sin. 45 1014003Google Scholar

    [28]

    Udaltsov V S, Larger L, Goedgebuer J P, Locquet A, Citrin D S 2005 J. Opt. Technol. 72 373Google Scholar

    [29]

    高飞, 李念强, 张力月, 欧阳康 2016 量子光学学报 22 289

    Gao F, Li N Q, Zhang L Y, Ouyang K 2016 J. Quantum Opt. 22 289

    [30]

    孙巍阳, 张胜海, 吴天安, 张晓旭 2016 激光与光电子学进展 53 121406Google Scholar

    Sun W Y, Zhang S H, Wu T A, Zhang X X 2016 Las. Optoelect. Prog. 53 121406Google Scholar

    [31]

    Wang A, Yang Y, Wang B, Zhang B, Li L, Wang Y C 2013 Opt. Express 21 8701Google Scholar

    [32]

    蒋龙, 夏光琼, 吴加贵, 肖平, 吴正茂 2012 中国激光 39 1202003Google Scholar

    Jiang L, Xia G Q, Wu J G, Xiao P, Wu Z M 2012 Chin. J. Lasers 39 1202003Google Scholar

    [33]

    Wu Y, Wang B, Zhang J, Wang A, Wang Y 2013 Math. Probl. Eng. 2013 1Google Scholar

    [34]

    张建忠, 王安帮, 张明江, 李晓春, 王云才 2011 物理学报 60 094207Google Scholar

    Zhang J Z, Wang A B, Zhang M J, Li X C, Wang Y C 2011 Acta Phys. Sin. 60 094207Google Scholar

    [35]

    王永胜, 赵彤, 王安帮, 张明江, 王云才 2017 激光与光电子进展 54 111404Google Scholar

    Wang Y S, Zhao T, Wang A B, Zhang M J, Wang Y C 2017 Las. Optoelect. Prog. 54 111404Google Scholar

    [36]

    Simpson T B, Liu J M, Huang K F, Tai K 1997 Quantum Semiclassical Opt. 9 765Google Scholar

    [37]

    江宁, 刘丁, 薛琛鹏, 邱昆 2015 中国科技论文 10 1640Google Scholar

    Jiang N, Liu D, Xue C P, Qiu K 2015 China Sciencepaper 10 1640Google Scholar

    [38]

    王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 物理学报 56 4372Google Scholar

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372Google Scholar

  • 图 1  SL-EOI-DFOF系统示意图

    Fig. 1.  Schematic diagram of the SL-EOI-DFOF system.

    图 2  SL-EOI-DFOF在不同的延迟时间${\tau _1}$下输出混沌激光的(a1)−(a3)时间序列、(b1)−(b3)自相关曲线以及(c1)−(c3)互信息曲线 (a1)−(c1)${\tau _1} = 2.7\;{\rm{ns}}$; (a2)−(c2)${\tau _1} = 2.8\;{\rm{ns}}$; (a3)−(c3)${\tau _1} = 2.9\;{\rm{ns}}$

    Fig. 2.  Time series (a1)−(a3), ACF curves (b1)−(b3) and MI curves (c1)−(c3) of chaotic laser from the SL-EOI-DFOF at different delay times ${\tau _1}$: (a1)−(c1)${\tau _1} = 2.7\;{\rm{ns}}$; (a2) −(c2)${\tau _1} = 2.8\;{\rm{ns}}$; (a3)−(c3)${\tau _1} = 2.9\;{\rm{ns}}$.

    图 3  SL-EOI-DFOF输出混沌激光延时特征值$\beta $随参数${k_{{\rm{in}}}}$${k_{{\rm{f1}}}}$变化的二维图

    Fig. 3.  Two-dimensional maps of the time-delay characteristic $\beta $ in the parameter space of ${k_{{\rm{in}}}}$ and ${k_{{\rm{f1}}}}$ of chaotic laser from the SL-EOI-DFOF.

    图 4  SL-EOI-SOF, SL-EOI-DOF, SL-EOI-SFOF, SL-EOI-DFOF和SL-DFOF输出混沌激光的延时特征值$\beta $${P_{\rm{m}}}$的变化

    Fig. 4.  Variations of the time delay characteristic values $\beta $ with ${P_{\rm{m}}}$ of chaotic laser from the SL-EOI-SOF, SL-EOI-DOF, SL-EOI-SFOF, SL-EOI-DFOF and SL-DFOF, respectively.

    图 5  SL-EOI-DFOF和SL-EOI-SFOF输出混沌激光的延时特征值$\beta $${\varLambda _1}$的变化

    Fig. 5.  Variations of the time delay characteristic values $\beta $ with ${\varLambda _1}$ of chaotic laser from the SL-EOI-DFOF and SL-EOI-SFOF, respectively.

    图 6  SL-EOI-DFOF在不同的外光注入系数${k_{{\rm{in}}}}$下输出混沌激光的(a1)−(a3)时间序列以及(b1)−(b3)对应的功率谱 (a1), (b1)${k_{{\rm{in}}}} = 0$; (a2), (b2)${k_{{\rm{in}}}} = 0.1$; (a3), (b3)${k_{{\rm{in}}}} = 0.2$, 其中(b1)—(b3)中的虚线标示了混沌激光3 dB带宽的值

    Fig. 6.  Time series (a1)−(a3) and the corresponding power spectra (b1)−(b3) of chaotic laser from SL-EOI-DFOF at different external light injection coefficient ${k_{{\rm{in}}}}$: (a1), (b1) ${k_{{\rm{in}}}} = 0$; (a2), (b2) ${k_{{\rm{in}}}} = 0.1$; (a3), (b3)${k_{{\rm{in}}}} = 0.2$, the dashed lines in (b1)−(b3) indicate the value of the 3 dB bandwidth of the chaotic laser.

    图 7  SL-EOI-DFOF输出混沌激光的带宽随${k_{{\rm{in}}}}$的变化

    Fig. 7.  Bandwidth versus ${k_{{\rm{in}}}}$ of chaotic laser from the SL-EOI-DFOF.

    图 8  SL-EOI-DFOF输出混沌激光的带宽随${\varLambda _1}$的变化

    Fig. 8.  Bandwidth versus ${\varLambda _1}$ of chaotic laser from the SL-EOI-DFOF.

    图 9  SL-EOI-DFOF输出混沌激光的带宽随${k_{{\rm{f1}}}}$的变化

    Fig. 9.  Bandwidth versus ${k_{{\rm{f1}}}}$ of chaotic laser from the SL-EOI-DFOF.

    图 10  SL-EOI-DFOF输出混沌激光的带宽随${P_{\rm{m}}}$的变化

    Fig. 10.  Bandwidth versus ${P_{\rm{m}}}$ of chaotic laser from the SL-EOI-DFOF.

  • [1]

    Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1995 Phys. Rev. A 51 4181Google Scholar

    [2]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173Google Scholar

    [3]

    Senlin Y 2009 J. Opt. Commun. 30 20Google Scholar

    [4]

    Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243Google Scholar

    [5]

    张明江, 刘铁根, 郑建宇, 王安帮, 王云才 2011 中国激光 4 136Google Scholar

    Zhang M J, Liu T G, Zheng J Y, Wang A B, Wang Y C 2011 Chin. J. Lasers 4 136Google Scholar

    [6]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Yoshimura K 2008 Nat. Photonics 2 728Google Scholar

    [7]

    Metropolis N, Ulam S 1949 J. Am. Stat. Assoc. 44 335Google Scholar

    [8]

    Wang Y, Wang B, Wang A 2008 IEEE Photonics Technol. Lett. 20 1636Google Scholar

    [9]

    Argyris A, Syvridis D, Larger L, Annovazzi V 2005 Nature 438 343Google Scholar

    [10]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815Google Scholar

    [11]

    张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679Google Scholar

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679Google Scholar

    [12]

    Wu J G, Xia G Q, Tang X, Lin X D, Wu Z M 2010 Opt. Express 18 6661Google Scholar

    [13]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018Google Scholar

    [14]

    Udaltsov V S, Goedgebuer J P, Larger L, Vladimir S, Cuenot J, William T, Rhodes 2003 Phys. Lett. E 308 54Google Scholar

    [15]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960Google Scholar

    [16]

    Vicente R, Daudén J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541Google Scholar

    [17]

    Li S S, Chan S C 2015 IEEE J. Quantum Electron. 21 541Google Scholar

    [18]

    孙巍阳, 张胜海, 吴天安, 张晓旭 2017 激光与光电子学进展 54 208Google Scholar

    Sun W Y, Zhang S H, Wu T A, Zhang X X 2017 Las. Optoelect. Prog. 54 208Google Scholar

    [19]

    Schires K, Gomez S, Gallet A, Duan G, Grillot F 2017 IEEE J. Quantum Electron. 99 1Google Scholar

    [20]

    Xu Y P, Zhang L, Lu P, Mihailov S, Chen L, Bao X Y 2018 Opt. Laser Technol. 109 654Google Scholar

    [21]

    Nguimdo R M, Soriano M C, Colet P 2011 Opt. Lett. 36 4322Google Scholar

    [22]

    Zhao A, Jiang N, Liu S 2019 Opt. Express 27 12336Google Scholar

    [23]

    Brunner D, Porte X, Soriano M C, Fischer I 2012 Sci. Rep. 2 732Google Scholar

    [24]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 0Google Scholar

    [25]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124Google Scholar

    [26]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347Google Scholar

    [27]

    卢东, 钟祝强, 夏光琼, 吴正茂 2016 光子学报 45 1014003Google Scholar

    Lu D, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Photon. Sin. 45 1014003Google Scholar

    [28]

    Udaltsov V S, Larger L, Goedgebuer J P, Locquet A, Citrin D S 2005 J. Opt. Technol. 72 373Google Scholar

    [29]

    高飞, 李念强, 张力月, 欧阳康 2016 量子光学学报 22 289

    Gao F, Li N Q, Zhang L Y, Ouyang K 2016 J. Quantum Opt. 22 289

    [30]

    孙巍阳, 张胜海, 吴天安, 张晓旭 2016 激光与光电子学进展 53 121406Google Scholar

    Sun W Y, Zhang S H, Wu T A, Zhang X X 2016 Las. Optoelect. Prog. 53 121406Google Scholar

    [31]

    Wang A, Yang Y, Wang B, Zhang B, Li L, Wang Y C 2013 Opt. Express 21 8701Google Scholar

    [32]

    蒋龙, 夏光琼, 吴加贵, 肖平, 吴正茂 2012 中国激光 39 1202003Google Scholar

    Jiang L, Xia G Q, Wu J G, Xiao P, Wu Z M 2012 Chin. J. Lasers 39 1202003Google Scholar

    [33]

    Wu Y, Wang B, Zhang J, Wang A, Wang Y 2013 Math. Probl. Eng. 2013 1Google Scholar

    [34]

    张建忠, 王安帮, 张明江, 李晓春, 王云才 2011 物理学报 60 094207Google Scholar

    Zhang J Z, Wang A B, Zhang M J, Li X C, Wang Y C 2011 Acta Phys. Sin. 60 094207Google Scholar

    [35]

    王永胜, 赵彤, 王安帮, 张明江, 王云才 2017 激光与光电子进展 54 111404Google Scholar

    Wang Y S, Zhao T, Wang A B, Zhang M J, Wang Y C 2017 Las. Optoelect. Prog. 54 111404Google Scholar

    [36]

    Simpson T B, Liu J M, Huang K F, Tai K 1997 Quantum Semiclassical Opt. 9 765Google Scholar

    [37]

    江宁, 刘丁, 薛琛鹏, 邱昆 2015 中国科技论文 10 1640Google Scholar

    Jiang N, Liu D, Xue C P, Qiu K 2015 China Sciencepaper 10 1640Google Scholar

    [38]

    王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 物理学报 56 4372Google Scholar

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372Google Scholar

  • [1] 穆鹏华, 陈昊, 刘国鹏, 胡国四. 级联耦合纳米激光器混沌时延特征消除和带宽增强. 物理学报, 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [2] 周沛, 张仁恒, 朱尖, 李念强. 基于双路光电反馈下光注入半导体激光器的高性能线性调频信号产生. 物理学报, 2022, 71(21): 214204. doi: 10.7498/aps.71.20221308
    [3] 庞爽, 冯玉玲, 于萍, 姚治海. 自混沌光相位调制光反馈半导体激光器输出光的混沌特性. 物理学报, 2022, 71(15): 150502. doi: 10.7498/aps.71.20220204
    [4] 李增, 冯玉玲, 王晓茜, 姚治海. 半导体激光器输出混沌光的延时特性和带宽. 物理学报, 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [5] 起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性. 物理学报, 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [6] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析. 物理学报, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [7] 丁灵, 吴正茂, 吴加贵, 夏光琼. 基于双光反馈半导体激光器的单向开环混沌同步通信. 物理学报, 2012, 61(1): 014212. doi: 10.7498/aps.61.014212
    [8] 梁君生, 武媛, 王安帮, 王云才. 利用频谱仪提取双反馈混沌半导体激光器的外腔长度密钥. 物理学报, 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [9] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [10] 丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂. 双光反馈半导体激光混沌系统中外腔延时反馈特征的抑制. 物理学报, 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [11] 杨玲珍, 乔占朵, 邬云翘, 王云才. 掺铒光纤环形激光器混沌带宽特性数值研究. 物理学报, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [12] 朱樟明, 郝报田, 李儒, 杨银堂. 一种基于延时和带宽约束的纳米级互连线优化模型. 物理学报, 2010, 59(3): 1997-2003. doi: 10.7498/aps.59.1997
    [13] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [14] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法. 物理学报, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [15] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [16] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [17] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [18] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [19] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [20] 刘 崇, 葛剑虹, 陈 军. 外腔反馈对半导体激光器振荡特性的影响. 物理学报, 2006, 55(10): 5211-5215. doi: 10.7498/aps.55.5211
计量
  • 文章访问数:  8753
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-12
  • 修回日期:  2020-02-14
  • 刊出日期:  2020-05-05

/

返回文章
返回