搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双光反馈半导体激光器的单向开环混沌同步通信

丁灵 吴正茂 吴加贵 夏光琼

引用本文:
Citation:

基于双光反馈半导体激光器的单向开环混沌同步通信

丁灵, 吴正茂, 吴加贵, 夏光琼

Unidirectional open-loop chaotic synchronization communication based on a semiconductor laser with double optical feedback

Ding Ling, Wu Zheng-Mao, Wu Jia-Gui, Xia Guang-Qiong
PDF
导出引用
  • 利用双光反馈半导体激光器作为混沌发射源, 构建了一个单向开环混沌通信系统, 并对系统的通信性能进行了相关仿真研究. 研究表明: 通过合理选取系统参量, 双光反馈半导体激光器所产生的混沌载波能很好地抑制外腔延时特征; 发射激光器和接收激光器在强注入锁定下能实现很好的混沌同步, 并且同步性能对频率失谐具有很好的容忍性; 采用附加混沌调制加密方式, 500 Mbits/s的信号能够很好地隐藏于混沌载波中, 并可在接收端成功解调.
    Using a semiconductor laser with double optical feedback as a chaos transmitter, a unidirectional chaotic synchronization communication system is constructed, and the performances of such a system are investigated numerically. The results show that by selecting reasonable parameters, the time delay behaviour of chaotic carrier generated by the semiconductor laser with double optical feedback can be suppressed efficiently; through the strong injection from transmitter to receiver, the perfect synchronization between transmitter and receiver can be realized, and the synchronization quality has a high tolerance to frequency detuning between transmitted laser and received laser; under the additive chaos modulation encryption scheme, the 500 Mbits/s encoded message can be hidden efficiently in the chaotic carrier and successfully extracted at the receiver.
    • 基金项目: 国家自然科学基金(批准号: 60978003, 61078003, 611780011, 11004161)、重庆市自然科学基金(批准号: 2010BB9125)和西南大学中央高校基本科研业务费专项基金(批准号: XDJK2009B010, XDJK2010C021)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978003, 61078003, 61178011, 11004161), the Natural Science Foundation of Chongqing City, China (Grant No. 2010BB9125), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. XDJK2009B010, XDJK2010C021).
    [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [2]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 437 343

    [3]

    Wu L, Zhu S Q 2003 Chin. Phys. 12 300

    [4]

    Sun J, Zhu S Q 2005 Commun. Theor. Phys. 43 233

    [5]

    Sugawara T, Tachikawa M, Tsukamoto T 1994 Phys. Rev. Lett. 72 3502

    [6]

    Van Wiggeren G D, Roy R 1998 Science 279 1198

    [7]

    Fan L, Xia G Q,Wu ZM2009 Acta Phys. Sin. 58 989 (in Chinese) [樊利, 夏光琼, 吴正茂 2009 物理学报 58 989]

    [8]

    Murakami A, Ohtsubo J 2002 Phys. Rev. A 65 33826

    [9]

    Buld′u J M, García-Ojalvo J, Torrent M C 2004 IEEE J. Quantum Electron. 40 640

    [10]

    Oowada I, Ariizumi H, Li M, Yoshimori S, Uchida A, Yoshimura K, Davis P 2009 Opt. Express 17 10025

    [11]

    Yan S L 2008 Acta Phys. Sin. 57 6878 (in Chinese) [颜森林 2008 物理学报 57 6878]

    [12]

    Liu H J, Feng J C 2009 Acta Phys. Sin. 58 1484 (in Chinese) [刘慧杰, 冯久超 2009 物理学报 58 1484]

    [13]

    Ortín S, Gutiérrez J M, Pesquera L, Vasquez H 2005 Physica A 351 133

    [14]

    Zhang X J,Wang B J, Yang L Z,Wang A B, Guo D M,Wang Y C 2009 Acta Phys. Sin. 58 3203 (in Chinese) [张秀娟, 王冰洁, 杨玲珍, 王安帮, 郭东明, 王云才 2009 物理学报 58 3203]

    [15]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [16]

    Tronciu V Z, Ermakov I V, Colet P, Mirasso C R 2008 Opt. Commun. 281 4747

    [17]

    Klein E, Gross N, Rosenbluh M, KinzelW, Khaykovich L, Kanter I 2006 Phys. Rev. E 73 066214

    [18]

    Vicente R, Mirasso C R 2007 Opt. Lett. 32 403

    [19]

    Cao L P, Xia G Q, Deng T, Lin X D, Wu Z M 2010 Acta Phys. Sin. 59 5541 (in Chinese) [操良平, 夏光琼, 邓涛, 林晓东, 吴正茂 2010 物理学报 59 5541]

    [20]

    Gross N, Kinzel W, Kanter I, Rosenbluh M, Khaykovich L 2006 Opt. Commun. 267 464

    [21]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237

    [22]

    Vicente R, Daudén J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541

    [23]

    Bezruchko B P, Karavaev A S, Ponomarenko V I, Prokhorov M D 2001 Phys. Rev. E 64 056216

    [24]

    Hegger R, Bünner J M, Kantz H 1998 Phys. Rev. Lett. 81 558

    [25]

    Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515

    [26]

    Zhao Y F 2009 Acta Phys. Sin. 58 6058 (in Chinese) [赵严峰 2009 物理学报 58 6058]

    [27]

    Wu L, Zhu S, Ni Y 2007 Eur. Phys. J. D 41 349

  • [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [2]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 437 343

    [3]

    Wu L, Zhu S Q 2003 Chin. Phys. 12 300

    [4]

    Sun J, Zhu S Q 2005 Commun. Theor. Phys. 43 233

    [5]

    Sugawara T, Tachikawa M, Tsukamoto T 1994 Phys. Rev. Lett. 72 3502

    [6]

    Van Wiggeren G D, Roy R 1998 Science 279 1198

    [7]

    Fan L, Xia G Q,Wu ZM2009 Acta Phys. Sin. 58 989 (in Chinese) [樊利, 夏光琼, 吴正茂 2009 物理学报 58 989]

    [8]

    Murakami A, Ohtsubo J 2002 Phys. Rev. A 65 33826

    [9]

    Buld′u J M, García-Ojalvo J, Torrent M C 2004 IEEE J. Quantum Electron. 40 640

    [10]

    Oowada I, Ariizumi H, Li M, Yoshimori S, Uchida A, Yoshimura K, Davis P 2009 Opt. Express 17 10025

    [11]

    Yan S L 2008 Acta Phys. Sin. 57 6878 (in Chinese) [颜森林 2008 物理学报 57 6878]

    [12]

    Liu H J, Feng J C 2009 Acta Phys. Sin. 58 1484 (in Chinese) [刘慧杰, 冯久超 2009 物理学报 58 1484]

    [13]

    Ortín S, Gutiérrez J M, Pesquera L, Vasquez H 2005 Physica A 351 133

    [14]

    Zhang X J,Wang B J, Yang L Z,Wang A B, Guo D M,Wang Y C 2009 Acta Phys. Sin. 58 3203 (in Chinese) [张秀娟, 王冰洁, 杨玲珍, 王安帮, 郭东明, 王云才 2009 物理学报 58 3203]

    [15]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [16]

    Tronciu V Z, Ermakov I V, Colet P, Mirasso C R 2008 Opt. Commun. 281 4747

    [17]

    Klein E, Gross N, Rosenbluh M, KinzelW, Khaykovich L, Kanter I 2006 Phys. Rev. E 73 066214

    [18]

    Vicente R, Mirasso C R 2007 Opt. Lett. 32 403

    [19]

    Cao L P, Xia G Q, Deng T, Lin X D, Wu Z M 2010 Acta Phys. Sin. 59 5541 (in Chinese) [操良平, 夏光琼, 邓涛, 林晓东, 吴正茂 2010 物理学报 59 5541]

    [20]

    Gross N, Kinzel W, Kanter I, Rosenbluh M, Khaykovich L 2006 Opt. Commun. 267 464

    [21]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237

    [22]

    Vicente R, Daudén J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541

    [23]

    Bezruchko B P, Karavaev A S, Ponomarenko V I, Prokhorov M D 2001 Phys. Rev. E 64 056216

    [24]

    Hegger R, Bünner J M, Kantz H 1998 Phys. Rev. Lett. 81 558

    [25]

    Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515

    [26]

    Zhao Y F 2009 Acta Phys. Sin. 58 6058 (in Chinese) [赵严峰 2009 物理学报 58 6058]

    [27]

    Wu L, Zhu S, Ni Y 2007 Eur. Phys. J. D 41 349

  • [1] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数. 物理学报, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [2] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [3] 赵艳梅, 夏光琼, 吴加贵, 吴正茂. 基于1550 nm垂直腔面发射激光器的长距离双向双信道光纤混沌保密通信研究. 物理学报, 2013, 62(21): 214206. doi: 10.7498/aps.62.214206
    [4] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [5] 刘莹莹, 潘炜, 江宁, 项水英, 林煜东. 链式互耦合半导体激光器的实时混沌同步. 物理学报, 2013, 62(2): 024208. doi: 10.7498/aps.62.024208
    [6] 魏月, 樊利, 夏光琼, 陈于淋, 吴正茂. 基于混沌信号非相干光注入下两半导体激光器间的双向混沌通信 . 物理学报, 2012, 61(22): 224203. doi: 10.7498/aps.61.224203
    [7] 梁君生, 武媛, 王安帮, 王云才. 利用频谱仪提取双反馈混沌半导体激光器的外腔长度密钥. 物理学报, 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [8] 孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才. 外部光注入混沌激光器产生超宽带微波信号的研究. 物理学报, 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [9] 丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂. 双光反馈半导体激光混沌系统中外腔延时反馈特征的抑制. 物理学报, 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [10] 何元, 邓涛, 吴正茂, 刘元元, 夏光琼. 非对称电流偏置下互耦半导体激光器的混沌同步特性研究. 物理学报, 2011, 60(4): 044204. doi: 10.7498/aps.60.044204
    [11] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [12] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法. 物理学报, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [13] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [14] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [15] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [16] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [17] 于海鹰, 崔碧峰, 陈依新, 邹德恕, 刘 莹, 沈光地. 一种与光纤高效耦合的新型大光腔大功率半导体激光器. 物理学报, 2007, 56(7): 3945-3949. doi: 10.7498/aps.56.3945
    [18] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [19] 张旭, 沈柯. 时空混沌的单向耦合同步. 物理学报, 2002, 51(12): 2702-2706. doi: 10.7498/aps.51.2702
    [20] 廉 鹏, 殷 涛, 高 国, 邹德恕, 陈昌华, 李建军, 沈光地, 马骁宇, 陈良惠. 新型多有源区隧道再生光耦合大功率半导体激光器. 物理学报, 2000, 49(12): 2374-2377. doi: 10.7498/aps.49.2374
计量
  • 文章访问数:  3288
  • PDF下载量:  425
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-16
  • 修回日期:  2011-01-24
  • 刊出日期:  2012-01-05

基于双光反馈半导体激光器的单向开环混沌同步通信

  • 1. 西南大学物理学院, 重庆 400715
    基金项目: 国家自然科学基金(批准号: 60978003, 61078003, 611780011, 11004161)、重庆市自然科学基金(批准号: 2010BB9125)和西南大学中央高校基本科研业务费专项基金(批准号: XDJK2009B010, XDJK2010C021)资助的课题.

摘要: 利用双光反馈半导体激光器作为混沌发射源, 构建了一个单向开环混沌通信系统, 并对系统的通信性能进行了相关仿真研究. 研究表明: 通过合理选取系统参量, 双光反馈半导体激光器所产生的混沌载波能很好地抑制外腔延时特征; 发射激光器和接收激光器在强注入锁定下能实现很好的混沌同步, 并且同步性能对频率失谐具有很好的容忍性; 采用附加混沌调制加密方式, 500 Mbits/s的信号能够很好地隐藏于混沌载波中, 并可在接收端成功解调.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回