搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外部光注入混沌激光器产生超宽带微波信号的研究

孟丽娜 张明江 郑建宇 张朝霞 王云才

引用本文:
Citation:

外部光注入混沌激光器产生超宽带微波信号的研究

孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才

Chaotic ultra-wideband microwave signal generation utilizing an optical injection chaotic laser diode

Meng Li-Na, Zhang Ming-Jiang, Zheng Jian-Yu, Zhang Zhao-Xia, Wang Yun-Cai
PDF
导出引用
  • 利用外部光注入混沌激光器产生了完全符合美国联邦通信委员会关于室内无线通信频谱限定的超宽带(UWB)微波信号.基于外部光注入光反馈半导体激光器的速率方程组,理论研究了外部及内部参量对半导体激光器输出混沌UWB脉冲信号的影响.研究表明,UWB信号的-10 dB带宽随着光注入强度、注入失谐量以及线宽增强因子的增大而增大,随着激光器偏置电流的增大而减小.同时,UWB信号的中心频率在58 GHz范围内变化.在实验中,通过设定其他参量和调节光注入强度,得到中心频率及带宽可调谐的混沌UWB微波信号,传输速率达到500 Mbit/s.实验结果与理论分析相符合.
    The ideal ultra-wideband (UWB) microwave pulses that fully comply with the indoor spectrum mask governed by Federal Communications Commission(FCC Indoor Mask)are generated by using continuous-wave optical injection to a chaotic laser diode. We firstly simulate and demonstrate the photonic generation of the chaotic UWB signal according to the rate equations of laser diode with optical feedback and injection. The simulations display that the -10 dB bandwidth of UWB signal increases with the increases of optical injection strength, frequency detuning, linewidth enhancement factor and with the decrease of bias current of the slave laser, and the UWB signal central frequency changes in a range from 5 to 8 GHz. We further experimentally obtain tunable chaotic UWB microwave signals with a rate up to 500 Mbit/s by tuning optical injection strength when the other parameters are fixed. The experimental results are in accordance with the theoretical analyses.
    • 基金项目: 国家自然科学基金(批准号:60927007, 60777041, 61108027)和国家重点基础研究发展计划(批准号:2010CB327800)资助的课题.
    [1]

    Aiello G R, Rogerson G D 2003 IEEE Microwave Mag. 4 36

    [2]

    Akyildiz I F, Su W L, Sankarasubramaniam Y, Cayirci E 2002 IEEE Comput. Mag. 40 102

    [3]
    [4]
    [5]

    Roy S, Foerster J R, Somayazulu V S, Leeper D G 2004 Proc. IEEE 92 295

    [6]

    Wang Y C 2009 Laser Optoelectron. Prog. 46 13(in Chinese) [王云才 2009 激光与光电子学进展 46 13]

    [7]
    [8]

    Shi Z G, Qiao S, Chen K S, Cui W Z, Ma W, Jiang T, Ran L X 2007 Prog. Electromagn. Res. 77 1

    [9]
    [10]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese)[张继兵、张建忠、杨毅彪、梁君生、王云才 2010 物理学报 59 7679]

    [11]
    [12]

    Chen S S, Zhang J Z, Yang L Z, Liang J S, Wang Y C 2011 Acta Phys. Sin. 60 010501(in Chinese)[陈莎莎、张建忠、杨玲珍、梁君生、王云才 2011 物理学报 60 010501]

    [13]
    [14]
    [15]

    Chong C C, Yong S K 2008 IEEE Trans. Veh.Technol. 57 1527

    [16]
    [17]

    Jeong M I, Lee J N, Lee C S 2008 J. Electromagn. Waves Appl. 22 1725

    [18]
    [19]

    Ran M, Lembrikov B I, Ben Ezra Y 2010 IEEE Photon. J. 2 35

    [20]

    Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241(in Chinese) [牛生晓、王云才、贺虎成、张明江 2009 物理学报 58 7241]

    [21]
    [22]
    [23]

    Wang Q, Yao J P 2006 Electron. Lett. 42 1304

    [24]
    [25]

    Li J Q, Fu S N, Xu K, Wu J, Lin J T, Tang M, Shum P 2008 Opt. Lett. 33 288

    [26]
    [27]

    Huang H, Xu K, Li J Q, Wu J, Hong X B, Lin J T 2008 IEEE J. Lightwave Technol. 26 2635

    [28]
    [29]

    Zhou E, Yu X B, Zhang X L, Xue W Q, Yu Y, Mrk J, Monroy I T 2009 Opt. Lett. 34 1336

    [30]
    [31]

    Pan S L, Yao J P 2009 Opt. Lett. 34 160

    [32]
    [33]

    Bolea M, Mora J, Ortega B, Capmany J 2009 Opt. Express 17 5023

    [34]

    Yu X, Gibbon T B, Monroy I T 2009 IEEE Photon. Technol. Lett. 21 1235

    [35]
    [36]
    [37]

    Zadok A, Wu X X, Sendowski J, Yariv A, Willner A E 2010 IEEE Photon. Technol. Lett. 22 239

    [38]

    Zheng J Y, Zhang M J, Wang A B, Wang Y C 2010 Opt. Lett. 35 1

    [39]
    [40]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才、张耕玮、王安邦、王冰洁、李艳丽、郭 萍 2007 物理学报 56 4372]

    [41]
    [42]
    [43]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [44]
    [45]

    Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633

    [46]
    [47]

    Osinski M, Buus J 1987 IEEE J. Quantum Electron. 23 9

    [48]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [49]
    [50]
    [51]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [52]

    Hwang S K, Liang D H 2006 Appl. Phys. Lett. 89 061120

    [53]
  • [1]

    Aiello G R, Rogerson G D 2003 IEEE Microwave Mag. 4 36

    [2]

    Akyildiz I F, Su W L, Sankarasubramaniam Y, Cayirci E 2002 IEEE Comput. Mag. 40 102

    [3]
    [4]
    [5]

    Roy S, Foerster J R, Somayazulu V S, Leeper D G 2004 Proc. IEEE 92 295

    [6]

    Wang Y C 2009 Laser Optoelectron. Prog. 46 13(in Chinese) [王云才 2009 激光与光电子学进展 46 13]

    [7]
    [8]

    Shi Z G, Qiao S, Chen K S, Cui W Z, Ma W, Jiang T, Ran L X 2007 Prog. Electromagn. Res. 77 1

    [9]
    [10]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese)[张继兵、张建忠、杨毅彪、梁君生、王云才 2010 物理学报 59 7679]

    [11]
    [12]

    Chen S S, Zhang J Z, Yang L Z, Liang J S, Wang Y C 2011 Acta Phys. Sin. 60 010501(in Chinese)[陈莎莎、张建忠、杨玲珍、梁君生、王云才 2011 物理学报 60 010501]

    [13]
    [14]
    [15]

    Chong C C, Yong S K 2008 IEEE Trans. Veh.Technol. 57 1527

    [16]
    [17]

    Jeong M I, Lee J N, Lee C S 2008 J. Electromagn. Waves Appl. 22 1725

    [18]
    [19]

    Ran M, Lembrikov B I, Ben Ezra Y 2010 IEEE Photon. J. 2 35

    [20]

    Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241(in Chinese) [牛生晓、王云才、贺虎成、张明江 2009 物理学报 58 7241]

    [21]
    [22]
    [23]

    Wang Q, Yao J P 2006 Electron. Lett. 42 1304

    [24]
    [25]

    Li J Q, Fu S N, Xu K, Wu J, Lin J T, Tang M, Shum P 2008 Opt. Lett. 33 288

    [26]
    [27]

    Huang H, Xu K, Li J Q, Wu J, Hong X B, Lin J T 2008 IEEE J. Lightwave Technol. 26 2635

    [28]
    [29]

    Zhou E, Yu X B, Zhang X L, Xue W Q, Yu Y, Mrk J, Monroy I T 2009 Opt. Lett. 34 1336

    [30]
    [31]

    Pan S L, Yao J P 2009 Opt. Lett. 34 160

    [32]
    [33]

    Bolea M, Mora J, Ortega B, Capmany J 2009 Opt. Express 17 5023

    [34]

    Yu X, Gibbon T B, Monroy I T 2009 IEEE Photon. Technol. Lett. 21 1235

    [35]
    [36]
    [37]

    Zadok A, Wu X X, Sendowski J, Yariv A, Willner A E 2010 IEEE Photon. Technol. Lett. 22 239

    [38]

    Zheng J Y, Zhang M J, Wang A B, Wang Y C 2010 Opt. Lett. 35 1

    [39]
    [40]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才、张耕玮、王安邦、王冰洁、李艳丽、郭 萍 2007 物理学报 56 4372]

    [41]
    [42]
    [43]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [44]
    [45]

    Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633

    [46]
    [47]

    Osinski M, Buus J 1987 IEEE J. Quantum Electron. 23 9

    [48]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [49]
    [50]
    [51]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [52]

    Hwang S K, Liang D H 2006 Appl. Phys. Lett. 89 061120

    [53]
  • [1] 戈杉杉, 王腾午, 戈静怡, 周沛, 李念强. 混沌光注入半导体激光器中极端事件的演变. 物理学报, 2023, 72(16): 164201. doi: 10.7498/aps.72.20230759
    [2] 周沛, 张仁恒, 朱尖, 李念强. 基于双路光电反馈下光注入半导体激光器的高性能线性调频信号产生. 物理学报, 2022, 71(21): 214204. doi: 10.7498/aps.71.20221308
    [3] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数. 物理学报, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [4] 孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才. 基于混沌激光的无后处理多位物理随机数高速产生技术研究. 物理学报, 2017, 66(3): 030503. doi: 10.7498/aps.66.030503
    [5] 王龙生, 赵彤, 王大铭, 吴旦昱, 周磊, 武锦, 刘新宇, 王安帮. 利用混沌激光多位量化实时产生14 Gb/s的物理随机数. 物理学报, 2017, 66(23): 234205. doi: 10.7498/aps.66.234205
    [6] 兰豆豆, 郭晓敏, 彭春生, 姬玉林, 刘香莲, 李璞, 郭龑强. 混沌光场光子统计分布及二阶相干度的分析与测量. 物理学报, 2017, 66(12): 120502. doi: 10.7498/aps.66.120502
    [7] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号. 物理学报, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [8] 丁灵, 吴正茂, 吴加贵, 夏光琼. 基于双光反馈半导体激光器的单向开环混沌同步通信. 物理学报, 2012, 61(1): 014212. doi: 10.7498/aps.61.014212
    [9] 魏月, 樊利, 夏光琼, 陈于淋, 吴正茂. 基于混沌信号非相干光注入下两半导体激光器间的双向混沌通信. 物理学报, 2012, 61(22): 224203. doi: 10.7498/aps.61.224203
    [10] 刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才. 混沌超宽带信号的光学产生及其链路传输. 物理学报, 2012, 61(8): 084204. doi: 10.7498/aps.61.084204
    [11] 陈莎莎, 张建忠, 杨玲珍, 梁君生, 王云才. 基于混沌激光产生1 Gbit/s的随机数. 物理学报, 2011, 60(1): 010501. doi: 10.7498/aps.60.010501
    [12] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [13] 牛生晓, 王云才, 贺虎成, 张明江. 光注入半导体激光器产生可调谐高频微波. 物理学报, 2009, 58(10): 7241-7245. doi: 10.7498/aps.58.7241
    [14] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [15] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [16] 于海鹰, 崔碧峰, 陈依新, 邹德恕, 刘 莹, 沈光地. 一种与光纤高效耦合的新型大光腔大功率半导体激光器. 物理学报, 2007, 56(7): 3945-3949. doi: 10.7498/aps.56.3945
    [17] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [18] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [19] 崔碧峰, 李建军, 邹德恕, 廉 鹏, 韩金茹, 王东凤, 杜金玉, 刘 莹, 赵慧敏, 沈光地. 大光腔小垂直发散角InGaAs/GaAs/AlGaAs半导体激光器. 物理学报, 2004, 53(7): 2150-2153. doi: 10.7498/aps.53.2150
    [20] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究. 物理学报, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
计量
  • 文章访问数:  7264
  • PDF下载量:  663
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-16
  • 修回日期:  2011-07-04
  • 刊出日期:  2011-06-05

/

返回文章
返回