搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混沌光场光子统计分布及二阶相干度的分析与测量

兰豆豆 郭晓敏 彭春生 姬玉林 刘香莲 李璞 郭龑强

引用本文:
Citation:

混沌光场光子统计分布及二阶相干度的分析与测量

兰豆豆, 郭晓敏, 彭春生, 姬玉林, 刘香莲, 李璞, 郭龑强

Photon number distribution and second-order degree of coherence of a chaotic laser: analysis and experimental investigation

Lan Dou-Dou, Guo Xiao-Min, Peng Chun-Sheng, Ji Yu-Lin, Liu Xiang-Lian, Li Pu, Guo Yan-Qiang
PDF
导出引用
  • 利用通信波段双通道单光子探测器,采用Hanbury Brown-Twiss关联测量方案,理论分析并实验测量了光反馈半导体激光器产生的混沌光场的光子统计分布及不同混沌状态光场的二阶相干度.通过对混沌光场二阶相干度g(2)()的理论分析,得出随着延迟时间和相干时间的变化,其与相干光、热光及单光子态的二阶相干度可明显区分并呈现出不同分布.同时实验上产生了频谱宽度6.7 GHz的混沌光场,测量了不同光子数分布的结果,并用高斯随机分布、泊松分布、玻色-爱因斯坦分布对光子数分布进行理论拟合,发现随着入射平均光子数的增加,光子数分布从玻色-爱因斯坦分布过渡到泊松分布,但整个过程都与高斯随机分布符合较好,且光场的二阶相干度g(2)(0)由2降至1.通过改变偏置电流(I=1.0Ith-2.0Ith)和反馈强度(0-10%),实验上研究了混沌光场由低频起伏到相干塌陷的过程中不同状态宏观动力学特性与二阶相干度的对应关系.结果表明:混沌光场在此过程中始终呈现出明显的聚束效应,并在频谱宽度最大时达到最强;同时给出了光子计数测量中聚束效应减弱的物理原因.实验表明该系统及方法能很好地揭示不同状态混沌光场的光子统计特性.
    The researches on higher-order coherence and quantum statistics of light field are the important researching issues in quantum optics. In 1956, Hanbury-Brown and Twiss (HBT) (Hanbury-Brown R, Twiss R Q 1956 Nature 177 27) revolutionized optical coherence and demonstrated a new form of photon correlation. The landmark experiment has far-reaching influenced and even inspired the quantum theory of optical coherence that Glauber developed to account for the conclusive observation by HBT. Ever since then, the HBT effect has motivated extensive studies of higher-order coherence and quantum statistics in quantum optics, as well as in quantum information science and cryptography. Based on the HBT scheme, the degree of coherence and photon number distribution of light field can be derived from correlation measurement and photon counting technique. With the rapid development of the photoelectric detection technology, single-photon detection, which is the most sensitive and very widespread method of optical measurement, is used to characterize the natures of light sources and indicate their differences. More recently, HBT scheme combined with single-photon detection was used to study spatial interference, ghost imaging, azimuthal interference effect, deterministic manipulation and detection of single-photon source, etc. Due to broadband RF spectrum, noiselike feature, hypersensitivity to the initial conditions and long-term unpredictability, chaotic laser meets the essential requirements for information security and cryptography, and has been developed in many applications such as chaos-based secure communications and physical random number generation, as well as public-channel secure key distribution. But the research mainly focused on macroscopic dynamics of the chaotic laser. Moreover, the precision of measurement has reached a quantum level at present. Quantum statistcs of light field can also uncover profoundly the physical nature of the light. Thus, it is important to exploit the higher-order degree of coherence and photon statistics of chaotic field, which contribute to characterizing the field and distinguishing it from others. In this paper, photon number distribution and second-order degree of coherence of a chaotic laser are analyzed and measured based on HBT scheme. The chaotic laser is composed of a distributed feedback laser diode with optical feedback in fiber external cavity configuration. The bandwidth of the chaotic laser that we obtain experimentally is 6.7 GHz. The photon number distribution of chaotic laser is fitted by Gaussian random distribution, Possionian distribution and Bose-Einstein distribution. With the increase of the mean photon number, the photon number distribution changes from Bose-Einstein distribution into Poissonian distribution and always accords with Gaussian random distribution well. The second-order coherence g(2)(0) drops gradually from 2 to 1. By changing the bias current (I = 1.0Ith-2.0Ith) and feedback strength (010%), we compare and illustrate different chaotic dynamics and g(2)(0). From low frequency fluctuation to coherence collapse, the chaotic laser shows bunching effect and fully chaotic field can be obtained at the broadest bandwidth. Furthermore, the physical explanation for sub-chaotic or weakening of bunching effect is provided. It is concluded that this method can well reveal photon statistics of chaotic laser and will open up an avenue to the research of chaos with quantum optics, which merges two important fields of modern physics and is extremely helpful for the high-speed remote chaotic communication.
      通信作者: 郭龑强, guoyanqiang@tyut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61405138,61505136,61505137,61671316)、国家国际科技合作专项(批准号:2014DFA50870)和山西省自然科学基金(批准号:201601D011015,201601D021021)资助的课题.
      Corresponding author: Guo Yan-Qiang, guoyanqiang@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61405138, 61505136, 61505137, 61671316), the Funds for International Science and Technology Cooperation Program of China (Grant No. 2014DFA50870), and the Shanxi Nature Science Foundation of China (Grant Nos. 201601D011015, 201601D021021).
    [1]

    Loudon R 2000 The Quantum Theory of Light (USA: Oxford Science Publications) p92

    [2]

    Hanbury-Brown R, Twiss R Q 1956 Nature 177 27

    [3]

    Glauber R J 1963 Phys. Rev. 130 2529

    [4]

    Glauber R J 1963 Phys. Rev. Lett. 10 84

    [5]

    Arecchi F T 1965 Phys. Rev. Lett. 15 912

    [6]

    Arecchi F T, Gatti E, Sona A 1966 Phys. Lett. 20 27

    [7]

    Morgan B L, Mandel L 1966 Phys. Rev. Lett. 16 1012

    [8]

    Kimble H J, Dagenais M, Mandel L 1977 Phys. Rev. Lett. 39 691

    [9]

    Short R, Mandel L 1983 Phys. Rev. Lett. 51 384

    [10]

    Hadfield H R 2009 Nat. Photon. 3 696

    [11]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777

    [12]

    Banaszek K, Demkowicz-Dobrzaski R, Walmsley I A 2009 Nat. Photon. 3 673

    [13]

    Zhai Y H, Chen X H, Zhang D, Wu L A 2005 Phys. Rev. A 72 043805

    [14]

    Paul H 1982 Rev. Mod. Phys. 54 1061

    [15]

    Zhang S H, Gao L, Xiong J, Feng L J, Cao D Z, Wang K 2009 Phys. Rev. Lett. 102 073904

    [16]

    Schultheiss V H, Batz S, Peschel U 2016 Nat. Photon. 10 106

    [17]

    Liu X F, Yao X R, Li M F, Yu W K, Chen X H, Sun Z B, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 184205 (in Chinese) [刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴令安, 翟光杰 2013 物理学报 62 184205]

    [18]

    Ryczkowski P, Barbier M, Friberg A T, Dudley J M, Genty G 2016 Nat. Photon. 10 167

    [19]

    Magaa-Loaiza O S, Mirhosseini M, Cross R M, Hashemi Rafsanjani S M, Boyd R W 2016 Sci. Adv. 2 e1501143

    [20]

    Diao W T, He J, Liu B, Wang J Y, Wang J M 2014 Acta Phys. Sin. 63 023701 (in Chinese) [刁文婷, 何军, 刘贝, 王杰英, 王军民 2014 物理学报 63 023701]

    [21]

    Guo Y Q, Li G, Zhang Y F, Zhang P F, Wang M J, Zhang T C 2012 Sci. China: Phys. Mech. Astron. 55 1523

    [22]

    Soriano M C, Garca-Ojalvo J, Mirasso C R, Fischer I 2013 Rev. Mod. Phys. 85 421

    [23]

    Wang S T, Wu Z M, Wu J G, Zhou L, Xia G Q 2015 Acta Phys. Sin. 64 154205 (in Chinese) [王顺天, 吴正茂, 吴加贵, 周立, 夏光琼 2015 物理学报 64 154205]

    [24]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [25]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [26]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [27]

    Yoshimura K, Muramatsu J, Davis P, Harayama T, Okumura H, Morikatsu S, Aida H, Uchida A 2012 Phys. Rev. Lett. 108 070602

    [28]

    van Wiggeren G D, Roy R 1998 Science 279 1198

    [29]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Peter Davis P 2008 Nat. Photon. 2 728

    [30]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [31]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese) [唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509]

    [32]

    Li N Q, Kim B, Locquet A, Choi D, Pan W, Citrin D S 2014 Opt. Lett. 39 5949

    [33]

    Albert F, Hopfmann C, Reitzenstein S, Schneider C, Hfling S, Worschech L, Kamp M, Kinzel W, Forchel A, Kanter 2011 Nat. Commun. 2 366

    [34]

    Lebreton A, Abram I, Braive R, Sagnes I, Robert-Philip I, Beveratos A 2013 Phys. Rev. A 88 013801

    [35]

    Kong L Q, Fan L L, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 7680 (in Chinese) [孔令琴, 樊林林, 王安邦, 王云才 2009 物理学报 58 7680]

    [36]

    Gooodman J W 2000 Statistical Optics (New York: Wiley-Interscience) p34

  • [1]

    Loudon R 2000 The Quantum Theory of Light (USA: Oxford Science Publications) p92

    [2]

    Hanbury-Brown R, Twiss R Q 1956 Nature 177 27

    [3]

    Glauber R J 1963 Phys. Rev. 130 2529

    [4]

    Glauber R J 1963 Phys. Rev. Lett. 10 84

    [5]

    Arecchi F T 1965 Phys. Rev. Lett. 15 912

    [6]

    Arecchi F T, Gatti E, Sona A 1966 Phys. Lett. 20 27

    [7]

    Morgan B L, Mandel L 1966 Phys. Rev. Lett. 16 1012

    [8]

    Kimble H J, Dagenais M, Mandel L 1977 Phys. Rev. Lett. 39 691

    [9]

    Short R, Mandel L 1983 Phys. Rev. Lett. 51 384

    [10]

    Hadfield H R 2009 Nat. Photon. 3 696

    [11]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777

    [12]

    Banaszek K, Demkowicz-Dobrzaski R, Walmsley I A 2009 Nat. Photon. 3 673

    [13]

    Zhai Y H, Chen X H, Zhang D, Wu L A 2005 Phys. Rev. A 72 043805

    [14]

    Paul H 1982 Rev. Mod. Phys. 54 1061

    [15]

    Zhang S H, Gao L, Xiong J, Feng L J, Cao D Z, Wang K 2009 Phys. Rev. Lett. 102 073904

    [16]

    Schultheiss V H, Batz S, Peschel U 2016 Nat. Photon. 10 106

    [17]

    Liu X F, Yao X R, Li M F, Yu W K, Chen X H, Sun Z B, Wu L A, Zhai G J 2013 Acta Phys. Sin. 62 184205 (in Chinese) [刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴令安, 翟光杰 2013 物理学报 62 184205]

    [18]

    Ryczkowski P, Barbier M, Friberg A T, Dudley J M, Genty G 2016 Nat. Photon. 10 167

    [19]

    Magaa-Loaiza O S, Mirhosseini M, Cross R M, Hashemi Rafsanjani S M, Boyd R W 2016 Sci. Adv. 2 e1501143

    [20]

    Diao W T, He J, Liu B, Wang J Y, Wang J M 2014 Acta Phys. Sin. 63 023701 (in Chinese) [刁文婷, 何军, 刘贝, 王杰英, 王军民 2014 物理学报 63 023701]

    [21]

    Guo Y Q, Li G, Zhang Y F, Zhang P F, Wang M J, Zhang T C 2012 Sci. China: Phys. Mech. Astron. 55 1523

    [22]

    Soriano M C, Garca-Ojalvo J, Mirasso C R, Fischer I 2013 Rev. Mod. Phys. 85 421

    [23]

    Wang S T, Wu Z M, Wu J G, Zhou L, Xia G Q 2015 Acta Phys. Sin. 64 154205 (in Chinese) [王顺天, 吴正茂, 吴加贵, 周立, 夏光琼 2015 物理学报 64 154205]

    [24]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [25]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [26]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [27]

    Yoshimura K, Muramatsu J, Davis P, Harayama T, Okumura H, Morikatsu S, Aida H, Uchida A 2012 Phys. Rev. Lett. 108 070602

    [28]

    van Wiggeren G D, Roy R 1998 Science 279 1198

    [29]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Peter Davis P 2008 Nat. Photon. 2 728

    [30]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [31]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese) [唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509]

    [32]

    Li N Q, Kim B, Locquet A, Choi D, Pan W, Citrin D S 2014 Opt. Lett. 39 5949

    [33]

    Albert F, Hopfmann C, Reitzenstein S, Schneider C, Hfling S, Worschech L, Kamp M, Kinzel W, Forchel A, Kanter 2011 Nat. Commun. 2 366

    [34]

    Lebreton A, Abram I, Braive R, Sagnes I, Robert-Philip I, Beveratos A 2013 Phys. Rev. A 88 013801

    [35]

    Kong L Q, Fan L L, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 7680 (in Chinese) [孔令琴, 樊林林, 王安邦, 王云才 2009 物理学报 58 7680]

    [36]

    Gooodman J W 2000 Statistical Optics (New York: Wiley-Interscience) p34

  • [1] 戈杉杉, 王腾午, 戈静怡, 周沛, 李念强. 混沌光注入半导体激光器中极端事件的演变. 物理学报, 2023, 72(16): 164201. doi: 10.7498/aps.72.20230759
    [2] 刘奇, 李璞, 开超, 胡春强, 蔡强, 张建国, 徐兵杰. 基于时延光子储备池计算的混沌激光短期预测. 物理学报, 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355
    [3] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数. 物理学报, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [4] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [5] 王龙生, 赵彤, 王大铭, 吴旦昱, 周磊, 武锦, 刘新宇, 王安帮. 利用混沌激光多位量化实时产生14 Gb/s的物理随机数. 物理学报, 2017, 66(23): 234205. doi: 10.7498/aps.66.234205
    [6] 范洪义, 吴泽. 二项-负二项组合光场态的光子统计性质及其在量子扩散通道中的生成. 物理学报, 2015, 64(8): 080303. doi: 10.7498/aps.64.080303
    [7] 刘莹莹, 潘炜, 江宁, 项水英, 林煜东. 链式互耦合半导体激光器的实时混沌同步. 物理学报, 2013, 62(2): 024208. doi: 10.7498/aps.62.024208
    [8] 萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才. 混沌半导体激光器的弛豫振荡频率对随机序列速率的影响. 物理学报, 2012, 61(15): 150502. doi: 10.7498/aps.61.150502
    [9] 刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才. 混沌超宽带信号的光学产生及其链路传输. 物理学报, 2012, 61(8): 084204. doi: 10.7498/aps.61.084204
    [10] 魏月, 樊利, 夏光琼, 陈于淋, 吴正茂. 基于混沌信号非相干光注入下两半导体激光器间的双向混沌通信. 物理学报, 2012, 61(22): 224203. doi: 10.7498/aps.61.224203
    [11] 黄毅泽, 李毅, 王海方, 俞晓静, 张虎, 张伟, 朱慧群, 孙若曦, 周晟, 张宇明. 双光纤光栅外腔半导体激光器相干失效研究. 物理学报, 2012, 61(1): 014201. doi: 10.7498/aps.61.014201
    [12] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [13] 陈莎莎, 张建忠, 杨玲珍, 梁君生, 王云才. 基于混沌激光产生1 Gbit/s的随机数. 物理学报, 2011, 60(1): 010501. doi: 10.7498/aps.60.010501
    [14] 孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才. 外部光注入混沌激光器产生超宽带微波信号的研究. 物理学报, 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [15] 张继兵, 张建忠, 杨毅彪, 梁君生, 王云才. 外腔半导体激光器随机数熵源的腔长分析. 物理学报, 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [16] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [17] 刘四平, 张玉驰, 张鹏飞, 李刚, 王军民, 张天才. 减反膜外腔半导体激光器特性的研究. 物理学报, 2009, 58(1): 285-289. doi: 10.7498/aps.58.285.1
    [18] 牛生晓, 王云才, 贺虎成, 张明江. 光注入半导体激光器产生可调谐高频微波. 物理学报, 2009, 58(10): 7241-7245. doi: 10.7498/aps.58.7241
    [19] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [20] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究. 物理学报, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
计量
  • 文章访问数:  6187
  • PDF下载量:  424
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-24
  • 修回日期:  2017-03-27
  • 刊出日期:  2017-06-05

/

返回文章
返回