-
在组合二项-负二项分布的基础上, 提出了二项-负二项组合光场态, 这种态能在Fock态历经量子扩散通道的过程中实现. 导出了此光场的二阶相干度公式, g(2)(t) =2-((m2+m)/(m+κt2)), 发现随着时间的推移光场从非经典Fock态变为经典态, 光子数m 经扩散通道后变成了 m+κt, κ是扩散常数, 相应的光子统计从亚泊松分布历经泊松分布再变成混沌光; 初始Fock态的光子数越多, 则扩散所需的时间越长.
-
关键词:
- 二项-负二项组合光场态 /
- 二阶相干度 /
- 亚泊松分布 /
- 泊松分布
According to the combinational binomial-negative-binomial distribution, we propose a binomial-negative-binomial combinational optical field state, which can be generated in the process of a Fock state |m>m| passing through a quantum-mechanical diffusion channel. We derive the second-order coherence degree formula, g(2)(t) =2-((m2+m)/(m+κt2)), which is the diffusion constant. We find that in the process of the Fock state undergoing quantum diffusion and becoming classical, the corresponding photon statistics evolves from sub-Poissonian distribution to Poisson distribution and finally goes to a chaotic state. We also find that the more photons in the initial Fock state, the longer time is needed for quantum decoherence.-
Keywords:
- binomial-negative-binomial combinational optical field state /
- second-order coherence /
- Poisson distribution /
- sub-Poissonian distribution
[1] Stoler D 1985 Opt. Acta 32 345
[2] Fan H Y, Ren G 2010 Chin. Phys. Lett. 27 050302
[3] Fan H Y, Jing S C 1995 Commun. Theor. Phys. 24 125
[4] Agarwal G S 1992 Phys. Rev. A 45 1787
[5] Fan H Y, Li S 2005 Commun. Theor. Phys. 43 519
[6] Preskill J 1998 Lecture Notes for Physics: Quantum Information and Computation (Pasadena: California Institution of Technology) p229
[7] Carmichael H J 1999 Statistical Methods in Ouantum Optics I, Master Equation and Foker-Planck Equations (Berlin: Springer-Verlag)
[8] Fan H Y, Klauder J R 1994 Phys. Rev. A 49 704
[9] Orszag M 2000 Quantum Optics (Berlin: Springer-Verlag)
-
[1] Stoler D 1985 Opt. Acta 32 345
[2] Fan H Y, Ren G 2010 Chin. Phys. Lett. 27 050302
[3] Fan H Y, Jing S C 1995 Commun. Theor. Phys. 24 125
[4] Agarwal G S 1992 Phys. Rev. A 45 1787
[5] Fan H Y, Li S 2005 Commun. Theor. Phys. 43 519
[6] Preskill J 1998 Lecture Notes for Physics: Quantum Information and Computation (Pasadena: California Institution of Technology) p229
[7] Carmichael H J 1999 Statistical Methods in Ouantum Optics I, Master Equation and Foker-Planck Equations (Berlin: Springer-Verlag)
[8] Fan H Y, Klauder J R 1994 Phys. Rev. A 49 704
[9] Orszag M 2000 Quantum Optics (Berlin: Springer-Verlag)
计量
- 文章访问数: 5561
- PDF下载量: 253
- 被引次数: 0