搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用混沌激光多位量化实时产生14 Gb/s的物理随机数

王龙生 赵彤 王大铭 吴旦昱 周磊 武锦 刘新宇 王安帮

引用本文:
Citation:

利用混沌激光多位量化实时产生14 Gb/s的物理随机数

王龙生, 赵彤, 王大铭, 吴旦昱, 周磊, 武锦, 刘新宇, 王安帮

14-Gb/s physical random numbers generated in real time by using multi-bit quantization of chaotic laser

Wang Long-Sheng, Zhao Tong, Wang Da-Ming, Wu Dan-Yu, Zhou Lei, Wu Jin, Liu Xin-Yu, Wang An-Bang
PDF
导出引用
  • 提出了一种基于混沌激光多位量化的高速物理随机数实时产生方法.利用外腔反馈混沌半导体激光器作为物理熵源,通过时钟速率为7 GHz的多位模数转换器对其采样量化,生成6位有效位的二进制随机比特,然后利用现场可编程软件抽取低2位有效位的随机序列并进行自延迟异或处理,获得了实时速率为14 Gb/s的物理随机数.该随机数具有良好的统计随机性,可成功通过随机数行业测试标准(NIST SP 800-22).
    Real-time high-speed physical random numbers are crucial for a broad spectrum of applications in cryptography, communications as well as numerical computations and simulations.Chaotic laser is promising to construct high-speed physical random numbers in real time benefitting from its complex nonlinear dynamics.However,the real-time generation rate of physical random numbers by using single-bit extraction is confronted with a bottleneck because of the bandwidth limitation caused by laser relaxation,which dominates the laser chaos and then limits the effective bandwidth only to a few GHz.Although some bandwidth-enhanced methods have been proposed to increase the single-bit generation rate, the potential is very limited,and meanwhile the defects of system complexity will be introduced.An alternative method is to construct high-speed physical random numbers by using the multi-bit extraction.In this method,each sampling point is converted to N digital bits by using multi-bit analog-to-digital converter (ADC) and their M(M 6 N) least significant bits are retained as an output of random bits,where N and M are the numbers of ADC bits and retained bits,respectively.The generation rate of random numbers is thus equal to M times sampling rate and can be greatly increased.Whereas,in the multi-bit extraction demonstrations,the intensity output of chaotic laser is usually digitized by the commercial oscilloscope and then processed with least-significant-bit retention followed by other postprocessing methods such as derivative,exclusive-OR,and bit-order reversal.These followed post-processing operations have to be implemented off-line and thus cannot support the real-time generation of random numbers.Resultantly,it is still an ongoing challenge to develop high-speed generation schemes of physical random numbers with the capability of real-time output.In this paper,a real-time high-speed generation method of physical random numbers by using multi-bit quantization of chaotic laser is proposed and demonstrated experimentally.In the proposed generation scheme,an external-cavity feedback semiconductor laser is utilized as a source of chaotic laser.Through quantizing the chaotic laser with 6-bit ADC, which is triggered by a clock at a sampling rate of 7 GHz,a binary sequence with six significant bits can be achieved. After the selection of the two least-significant bits and self-delayed exclusive-OR operation in the field-programmable gate array (FPGA),a real-time 14-Gb/s binary stream is finally achieved.This binary stream has good uniformity and independence,and has passed the industry-standard statistical test suite provided by the National Institute of Standards and Technology (NIST),showing a good statistical randomness.It is believed that this work provides an alternative method of generating the real-time high-speed random numbers and promotes its applications in the field of information security.
      通信作者: 刘新宇, xyliu@ime.ac.cn;wanganbang@tyut.edu.cn ; 王安帮, xyliu@ime.ac.cn;wanganbang@tyut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61475111,61671316)、山西省优秀青年自然科学基金(批准号:2015021004)、山西省国际科技合作项目(批准号:201603D421008)和国际科技合作项目(批准号:2014DFA50870)资助的课题.
      Corresponding author: Liu Xin-Yu, xyliu@ime.ac.cn;wanganbang@tyut.edu.cn ; Wang An-Bang, xyliu@ime.ac.cn;wanganbang@tyut.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 61475111, 61671316), the Natural Science Foundation for Excellent Young Scientists of Shanxi, China (Grant No. 2015021004), the International Science and Technology Cooperation Program of Shanxi Province, China (Grant No. 201603D421008), and the International Science and Technology Cooperation Program of China (Grant No. 2014DFA50870).
    [1]

    Metropolis N, Ulam S 1949 J. Amer. Stat. Assoc. 44 335

    [2]

    Zhao Q C, Yin H X 2013 Optik 124 2161

    [3]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circ. Syst. I:Fundam. Theory Appl. 47 615

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Comput. 52 403

    [5]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [6]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [7]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [8]

    Zhao D L, Li P, Liu X L, Guo X M, Guo Y Q, Zhang J G, Wang Y C 2017 Acta Phys. Sin. 66 050501 (in Chinese)[赵东亮, 李璞, 刘香莲, 郭晓敏, 郭龑强, 张建国, 王云才 2017 物理学报 66 050501]

    [9]

    Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633

    [10]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [11]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [12]

    Zhang M J, Liu T G, Li P, Wang A B, Zhang J Z, Wang Y C 2011 IEEE Photon. Technol. Lett. 23 1872

    [13]

    Hong Y H, Spencer P S, Shore K A 2012 J. Opt. Soc. Amer. B 29 415

    [14]

    Wang A B, Wang Y C, Yang Y B, Zhang M J, Xu H, Wang B J 2013 Appl. Phys. Lett. 102 031112

    [15]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [16]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese)[唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509]

    [17]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [18]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [19]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese)[杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 物理学报 64 084204]

    [20]

    Akizawa Y, Yamazaki T, Uchida A, Harayama T, Sunada S, Araiet K, Yoshimura K, Davis P 2012 IEEE Photon. Technol. Lett. 24 1042

    [21]

    Oliver N, Soriano M, Sukow D, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [22]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [23]

    Tang X, Wu Z M, Wu J G, Deng T, Chen J J, Fan L, Zhong Z Q, Xia G Q 2015 Opt. Express 23 33130

    [24]

    Sun Y Y, Li P, Guo Y Q, Guo X M, Liu X L, Zhang J G, Sang L X, Wang Y C 2017 Acta Phys. Sin. 66 030503 (in Chinese)[孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才 2017 物理学报 66 030503]

    [25]

    Wang A B, Wang L S, Li P, Wang Y C 2017 Opt. Express 25 3153

    [26]

    Wu D Y, Zhou L, Huang Y K, Wang P, Wu J, Jin Z, Liu X Y 2016 Bipolar/BiCMOS Circuits and Technology Meeting New Jersey, America, September 25-27 2016 p90

    [27]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [28]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [29]

    Sciamanna M, Shore K A 2015 Nat. Photon. 9 151

    [30]

    Wang L S, Zhao T, Wang D M, Wu D Y, Zhou L, Wu J, Liu X Y, Wang Y C, Wang A B 2017 IEEE Photon. J. 9 7201412

  • [1]

    Metropolis N, Ulam S 1949 J. Amer. Stat. Assoc. 44 335

    [2]

    Zhao Q C, Yin H X 2013 Optik 124 2161

    [3]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circ. Syst. I:Fundam. Theory Appl. 47 615

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Comput. 52 403

    [5]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [6]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [7]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [8]

    Zhao D L, Li P, Liu X L, Guo X M, Guo Y Q, Zhang J G, Wang Y C 2017 Acta Phys. Sin. 66 050501 (in Chinese)[赵东亮, 李璞, 刘香莲, 郭晓敏, 郭龑强, 张建国, 王云才 2017 物理学报 66 050501]

    [9]

    Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633

    [10]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [11]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [12]

    Zhang M J, Liu T G, Li P, Wang A B, Zhang J Z, Wang Y C 2011 IEEE Photon. Technol. Lett. 23 1872

    [13]

    Hong Y H, Spencer P S, Shore K A 2012 J. Opt. Soc. Amer. B 29 415

    [14]

    Wang A B, Wang Y C, Yang Y B, Zhang M J, Xu H, Wang B J 2013 Appl. Phys. Lett. 102 031112

    [15]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [16]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese)[唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509]

    [17]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [18]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [19]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese)[杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 物理学报 64 084204]

    [20]

    Akizawa Y, Yamazaki T, Uchida A, Harayama T, Sunada S, Araiet K, Yoshimura K, Davis P 2012 IEEE Photon. Technol. Lett. 24 1042

    [21]

    Oliver N, Soriano M, Sukow D, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [22]

    Li X Z, Li S S, Zhuang J P, Chan S C 2015 Opt. Lett. 40 3970

    [23]

    Tang X, Wu Z M, Wu J G, Deng T, Chen J J, Fan L, Zhong Z Q, Xia G Q 2015 Opt. Express 23 33130

    [24]

    Sun Y Y, Li P, Guo Y Q, Guo X M, Liu X L, Zhang J G, Sang L X, Wang Y C 2017 Acta Phys. Sin. 66 030503 (in Chinese)[孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才 2017 物理学报 66 030503]

    [25]

    Wang A B, Wang L S, Li P, Wang Y C 2017 Opt. Express 25 3153

    [26]

    Wu D Y, Zhou L, Huang Y K, Wang P, Wu J, Jin Z, Liu X Y 2016 Bipolar/BiCMOS Circuits and Technology Meeting New Jersey, America, September 25-27 2016 p90

    [27]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [28]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [29]

    Sciamanna M, Shore K A 2015 Nat. Photon. 9 151

    [30]

    Wang L S, Zhao T, Wang D M, Wu D Y, Zhou L, Wu J, Liu X Y, Wang Y C, Wang A B 2017 IEEE Photon. J. 9 7201412

  • [1] 王永博, 唐曦, 赵乐涵, 张鑫, 邓进, 吴正茂, 杨俊波, 周恒, 吴加贵, 夏光琼. 基于Si3N4微环混沌光频梳的Tbit/s并行实时物理随机数方案. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231913
    [2] 戈杉杉, 王腾午, 戈静怡, 周沛, 李念强. 混沌光注入半导体激光器中极端事件的演变. 物理学报, 2023, 72(16): 164201. doi: 10.7498/aps.72.20230759
    [3] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数. 物理学报, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [4] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [5] 姚晓洁, 唐曦, 吴正茂, 夏光琼. 基于两正交互耦1550 nm垂直腔面发射激光器获取多路随机数. 物理学报, 2018, 67(2): 024204. doi: 10.7498/aps.67.20171902
    [6] 兰豆豆, 郭晓敏, 彭春生, 姬玉林, 刘香莲, 李璞, 郭龑强. 混沌光场光子统计分布及二阶相干度的分析与测量. 物理学报, 2017, 66(12): 120502. doi: 10.7498/aps.66.120502
    [7] 赵东亮, 李璞, 刘香莲, 郭晓敏, 郭龑强, 张建国, 王云才. 利用混沌激光脉冲在线实时产生7 Gbit/s物理随机数. 物理学报, 2017, 66(5): 050501. doi: 10.7498/aps.66.050501
    [8] 孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才. 基于混沌激光的无后处理多位物理随机数高速产生技术研究. 物理学报, 2017, 66(3): 030503. doi: 10.7498/aps.66.030503
    [9] 李璞, 江镭, 孙媛媛, 张建国, 王云才. 面向全光物理随机数发生器的混沌实时光采样研究. 物理学报, 2015, 64(23): 230502. doi: 10.7498/aps.64.230502
    [10] 刘莹莹, 潘炜, 江宁, 项水英, 林煜东. 链式互耦合半导体激光器的实时混沌同步. 物理学报, 2013, 62(2): 024208. doi: 10.7498/aps.62.024208
    [11] 刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才. 混沌超宽带信号的光学产生及其链路传输. 物理学报, 2012, 61(8): 084204. doi: 10.7498/aps.61.084204
    [12] 萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才. 混沌半导体激光器的弛豫振荡频率对随机序列速率的影响. 物理学报, 2012, 61(15): 150502. doi: 10.7498/aps.61.150502
    [13] 唐曦, 吴加贵, 夏光琼, 吴正茂. 基于互注入半导体激光器的混沌输出产生17.5 Gbit/s随机码. 物理学报, 2011, 60(11): 110509. doi: 10.7498/aps.60.110509
    [14] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [15] 孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才. 外部光注入混沌激光器产生超宽带微波信号的研究. 物理学报, 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [16] 陈莎莎, 张建忠, 杨玲珍, 梁君生, 王云才. 基于混沌激光产生1 Gbit/s的随机数. 物理学报, 2011, 60(1): 010501. doi: 10.7498/aps.60.010501
    [17] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [18] 张继兵, 张建忠, 杨毅彪, 梁君生, 王云才. 外腔半导体激光器随机数熵源的腔长分析. 物理学报, 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [19] 刘四平, 张玉驰, 张鹏飞, 李刚, 王军民, 张天才. 减反膜外腔半导体激光器特性的研究. 物理学报, 2009, 58(1): 285-289. doi: 10.7498/aps.58.285.1
    [20] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
计量
  • 文章访问数:  4741
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-12
  • 修回日期:  2017-08-04
  • 刊出日期:  2017-12-05

/

返回文章
返回