搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于两正交互耦1550 nm垂直腔面发射激光器获取多路随机数

姚晓洁 唐曦 吴正茂 夏光琼

引用本文:
Citation:

基于两正交互耦1550 nm垂直腔面发射激光器获取多路随机数

姚晓洁, 唐曦, 吴正茂, 夏光琼

Multi-channel physical random number generation based on two orthogonally mutually coupled 1550 nm vertical-cavity surface-emitting lasers

Yao Xiao-Jie, Tang Xi, Wu Zheng-Mao, Xia Guang-Qiong
PDF
导出引用
  • 提出将正交互耦1550 nm垂直腔面发射激光器(1550 nm-VCSEL)在优化条件下输出的多路平均功率可比拟、延时特征(TDS)得到有效抑制的混沌信号作为混沌熵源,经8位模数转换器(ADC)量化和最低有效位(m-LSB)后续处理获取多路物理随机数的方案,并研究了系统参量对最终获取的比特序列随机性的影响.首先,基于VCSEL的自旋反转模型分析耦合强度和频率失谐对两个正交互耦合1550 nm-VCSEL输出动力学的影响,初步确定利用该系统产生四路平均功率可比拟、TDS得到抑制的混沌信号所需的耦合强度和频率失谐优化范围;在此基础上,选择一个耦合强度值,利用处于优化范围内的不同频率失谐下获取的四路混沌信号作为熵源,经8位ADC量化和m-LSB后续处理得到最终的比特序列;最后,采用NIST Special Publication 800-22统计测试套件对获取的最终比特序列的随机性能进行测试,确定了同时获取四路高质量随机数所需的参数范围.
    Physical random number, which is non-reproducible and non-periodical, has attracted much attention due to its potential applications in various fields such as secure communication, statistical analysis, and numerical simulation. Recently, fast physical random number generators based on optical chaotic entropy sources have been demonstrated to reach a rate of up to several hundreds of Gbit/s. Although many efforts have been made to optimize the schemeis of chaotic-based random number generation, most of them are based on distributed feedback semiconductor lasers and can only generate single-channel physical random number. After taking into account the costs and technological applications, the multi-channel physical random number generation technique needs developing. On the other hand, vertical-cavity surface-emitting lasers (VCSELs) can simultaneously emit two orthogonally polarized components under appropriate parameter conditions, and then each polarized component can be used as an entropy source for generating random number. As a result, VCSEL-based chaotic entropy sources may be suitable for multi-channel random number generation. In this work, a scheme for achieving multi-channel physical random number is proposed. Also the influence of the coupling parameters on the performance of the randomness of final bit sequences is investigated. For such a scheme, two orthogonally mutually coupled VCSELs are used to supply four-channel chaotic signals with a comparable output power and weak time-delay signature (TDS). The four-channel chaotic signals, which serve as chaotic entropy, are quantized by 8-bit analog-to-digital converters (ADCs) with 20 GHz sampling rate, and then the m least significant bit (m-LSB) post-processing method is adopted for generating final four-channel random bit sequences. Firstly, based on the spin-flip mode of VCSELs, the influences of coupling strength and frequency detuning on the dynamics of two orthogonally mutually coupled 1550 nm VCSELs are analyzed. Next, the optimized parameter regions for generating four-channel chaotic signals with comparable output power and weak TDS are preliminarily determined. For a given optimized value of coupling strength and different frequency detunings within the optimized parameter regions, the generated four-channel chaotic signals are taken as the entropy sources for obtaining final bit sequence by quantizing the 8-bit ADC and m-LSB post-processing. Finally, the randomness of the four final bit sequences is tested by NIST SP 800-22 statistical test suite, and the regions of preferred coupling parameters for simultaneously generating four-channel random numbers are determined.
      通信作者: 吴正茂, zmwu@swu.edu.cn;gqxia@swu.edu.cn ; 夏光琼, zmwu@swu.edu.cn;gqxia@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61475127,61575163,61775184,11704316)和中央高校基本科研业务费专项资金(批准号:XDJK2017C063)资助的课题.
      Corresponding author: Wu Zheng-Mao, zmwu@swu.edu.cn;gqxia@swu.edu.cn ; Xia Guang-Qiong, zmwu@swu.edu.cn;gqxia@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475127, 61575163, 61775184, 11704316) and the Fundamental Research Funds for the Central Universities of China (Grant No. XDJK2017C063).
    [1]

    Gallager R G 2008 Principles of Digital Communication (New York: Cambridge University Press) pp199-244

    [2]

    Stinson D R 2005 Cryptography: Theory and Practice (Ontario: CRC Press) pp423-452

    [3]

    Asmussen S, Glynn P W 2007 Stochastic Simulation: Algorithms and Analysis (New York: Springer-Verlag) pp30-65

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Computers 52 403

    [5]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circuits Syst. I 47 615

    [6]

    Danger J L, Guilley S, Hoogvorst P 2009 Microelectron. J. 40 1650

    [7]

    Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711

    [8]

    Marangon D G, Vallone G, Villoresi P 2017 Phys. Rev. Lett. 118 060503

    [9]

    Zhu M Y, Liu Y, Yu Q F, Guo H 2012 Laser Phys. Lett. 9 775

    [10]

    Guo H, Tang W Z, Liu Y, Wei W 2010 Phys. Rev. E 81 051137

    [11]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728

    [12]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [13]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [14]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [15]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photonics 4 58

    [16]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2011 Opt. Lett. 36 4632

    [17]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [18]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [19]

    Li P, Jiang L, Sun Y Y, Zhang J G, Wang Y C 2015 Acta Phys. Sin. 64 230502 (in Chinese)[李璞, 江镭, 孙媛媛, 张建国, 王云才 2015 物理学报 64 230502]

    [20]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [21]

    Li N Q, Pan W, Xiang S Y, Zhao Q C, Zhang L Y 2014 IEEE Photon. Technol. Lett. 26 1886

    [22]

    Tang X, Wu Z M, Wu J G, Deng T, Fan L, Zhong Z Q, Chen J J, Xia G Q 2015 Laser Phys. Lett. 12 015003

    [23]

    Tang X, Wu Z M, Wu J G, Deng T, Chen J J, Fan L 2015 Opt. Express 23 33130

    [24]

    Virte M, Mercier E, Thienpont H, Panajotov K, Sciamanna M 2014 Opt. Express 22 17271

    [25]

    Zhang L M, Pan B W, Chen G C, Guo L, Lu D, Zhao L J, Wang W 2017 Sci. Rep. 8 45900

    [26]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [27]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [28]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2012 IEEE Photon. Technol. Lett. 24 1267

    [29]

    Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 024209 (in Chinese)[刘庆喜, 潘炜, 张力月, 李念强, 阎娟 2015 物理学报 64 024209]

    [30]

    Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, Dray J, Vo S 2010 NIST Special Publication 800-22 (Rev.1) (Gaithersburg: National Institute of Standards and Technology)

    [31]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [32]

    Sciamanna M, Gatare I, Locquet A, Panajotov K 2007 Phys. Rev. E 75 056213

    [33]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700108

    [34]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [35]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [36]

    Torre M, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M 2011 IEEE J. Quantum Electron. 47 92

    [37]

    Yang F, Tang X, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Phys. Sin. 65 194207 (in Chinese)[杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂 2016 物理学报 65 194207]

    [38]

    Cao T, Lin X D, Xia G Q, Chen X H, Wu Z M 2012 Acta Phys. Sin. 61 114202 (in Chinese)[曹体, 林晓东, 夏光琼, 陈兴华, 吴正茂 2012 物理学报 61 114202]

    [39]

    Quirce A, Valle A, Thienpont H, Panajotov K 2016 J. Opt. Soc. Am. B 33 90

    [40]

    Wu J G, Wu Z M, Xia G Q, Feng G Y 2012 Opt. Express 20 1741

  • [1]

    Gallager R G 2008 Principles of Digital Communication (New York: Cambridge University Press) pp199-244

    [2]

    Stinson D R 2005 Cryptography: Theory and Practice (Ontario: CRC Press) pp423-452

    [3]

    Asmussen S, Glynn P W 2007 Stochastic Simulation: Algorithms and Analysis (New York: Springer-Verlag) pp30-65

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Computers 52 403

    [5]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circuits Syst. I 47 615

    [6]

    Danger J L, Guilley S, Hoogvorst P 2009 Microelectron. J. 40 1650

    [7]

    Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711

    [8]

    Marangon D G, Vallone G, Villoresi P 2017 Phys. Rev. Lett. 118 060503

    [9]

    Zhu M Y, Liu Y, Yu Q F, Guo H 2012 Laser Phys. Lett. 9 775

    [10]

    Guo H, Tang W Z, Liu Y, Wei W 2010 Phys. Rev. E 81 051137

    [11]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728

    [12]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [13]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [14]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [15]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photonics 4 58

    [16]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2011 Opt. Lett. 36 4632

    [17]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [18]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [19]

    Li P, Jiang L, Sun Y Y, Zhang J G, Wang Y C 2015 Acta Phys. Sin. 64 230502 (in Chinese)[李璞, 江镭, 孙媛媛, 张建国, 王云才 2015 物理学报 64 230502]

    [20]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [21]

    Li N Q, Pan W, Xiang S Y, Zhao Q C, Zhang L Y 2014 IEEE Photon. Technol. Lett. 26 1886

    [22]

    Tang X, Wu Z M, Wu J G, Deng T, Fan L, Zhong Z Q, Chen J J, Xia G Q 2015 Laser Phys. Lett. 12 015003

    [23]

    Tang X, Wu Z M, Wu J G, Deng T, Chen J J, Fan L 2015 Opt. Express 23 33130

    [24]

    Virte M, Mercier E, Thienpont H, Panajotov K, Sciamanna M 2014 Opt. Express 22 17271

    [25]

    Zhang L M, Pan B W, Chen G C, Guo L, Lu D, Zhao L J, Wang W 2017 Sci. Rep. 8 45900

    [26]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [27]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [28]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2012 IEEE Photon. Technol. Lett. 24 1267

    [29]

    Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 024209 (in Chinese)[刘庆喜, 潘炜, 张力月, 李念强, 阎娟 2015 物理学报 64 024209]

    [30]

    Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, Dray J, Vo S 2010 NIST Special Publication 800-22 (Rev.1) (Gaithersburg: National Institute of Standards and Technology)

    [31]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [32]

    Sciamanna M, Gatare I, Locquet A, Panajotov K 2007 Phys. Rev. E 75 056213

    [33]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700108

    [34]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [35]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [36]

    Torre M, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M 2011 IEEE J. Quantum Electron. 47 92

    [37]

    Yang F, Tang X, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Phys. Sin. 65 194207 (in Chinese)[杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂 2016 物理学报 65 194207]

    [38]

    Cao T, Lin X D, Xia G Q, Chen X H, Wu Z M 2012 Acta Phys. Sin. 61 114202 (in Chinese)[曹体, 林晓东, 夏光琼, 陈兴华, 吴正茂 2012 物理学报 61 114202]

    [39]

    Quirce A, Valle A, Thienpont H, Panajotov K 2016 J. Opt. Soc. Am. B 33 90

    [40]

    Wu J G, Wu Z M, Xia G Q, Feng G Y 2012 Opt. Express 20 1741

  • [1] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐. 表面液晶-垂直腔面发射激光器阵列的热特性. 物理学报, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [2] 张浩, 郭星星, 项水英. 基于单向注入垂直腔面发射激光器系统的密钥分发. 物理学报, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [3] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长. 物理学报, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [4] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [5] 王龙生, 赵彤, 王大铭, 吴旦昱, 周磊, 武锦, 刘新宇, 王安帮. 利用混沌激光多位量化实时产生14 Gb/s的物理随机数. 物理学报, 2017, 66(23): 234205. doi: 10.7498/aps.66.234205
    [6] 赵东亮, 李璞, 刘香莲, 郭晓敏, 郭龑强, 张建国, 王云才. 利用混沌激光脉冲在线实时产生7 Gbit/s物理随机数. 物理学报, 2017, 66(5): 050501. doi: 10.7498/aps.66.050501
    [7] 孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才. 基于混沌激光的无后处理多位物理随机数高速产生技术研究. 物理学报, 2017, 66(3): 030503. doi: 10.7498/aps.66.030503
    [8] 杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂. 基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号. 物理学报, 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [9] 关宝璐, 刘欣, 江孝伟, 刘储, 徐晨. 多横模垂直腔面发射激光器及其波长特性. 物理学报, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [10] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析. 物理学报, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [11] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 物理学报, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [12] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [13] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [14] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [15] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [16] 王同喜, 关宝璐, 郭霞, 沈光地. 载流子输运和寄生参数对隧道再生双有源区垂直腔面发射激光器调制特性的影响. 物理学报, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [17] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [18] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [19] 赵红东, 宋殿友, 张智峰, 孙 静, 孙 梅, 武 一, 温幸饶. n型DBR中电势对垂直腔面发射激光器阈值的影响. 物理学报, 2004, 53(11): 3744-3747. doi: 10.7498/aps.53.3744
    [20] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
计量
  • 文章访问数:  3111
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-26
  • 修回日期:  2017-09-18
  • 刊出日期:  2019-01-20

基于两正交互耦1550 nm垂直腔面发射激光器获取多路随机数

    基金项目: 国家自然科学基金(批准号:61475127,61575163,61775184,11704316)和中央高校基本科研业务费专项资金(批准号:XDJK2017C063)资助的课题.

摘要: 提出将正交互耦1550 nm垂直腔面发射激光器(1550 nm-VCSEL)在优化条件下输出的多路平均功率可比拟、延时特征(TDS)得到有效抑制的混沌信号作为混沌熵源,经8位模数转换器(ADC)量化和最低有效位(m-LSB)后续处理获取多路物理随机数的方案,并研究了系统参量对最终获取的比特序列随机性的影响.首先,基于VCSEL的自旋反转模型分析耦合强度和频率失谐对两个正交互耦合1550 nm-VCSEL输出动力学的影响,初步确定利用该系统产生四路平均功率可比拟、TDS得到抑制的混沌信号所需的耦合强度和频率失谐优化范围;在此基础上,选择一个耦合强度值,利用处于优化范围内的不同频率失谐下获取的四路混沌信号作为熵源,经8位ADC量化和m-LSB后续处理得到最终的比特序列;最后,采用NIST Special Publication 800-22统计测试套件对获取的最终比特序列的随机性能进行测试,确定了同时获取四路高质量随机数所需的参数范围.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回