-
构建时间分辨相干反斯托克斯拉曼散射(CARS)光谱系统,从微观层次研究硝基甲烷的分子相干振动动力学特性.实验中采用超连续白光作为斯托克斯光,通过调整斯托克斯光的时间延迟,得到不同振动模式的CARS光谱.通过对振动弛豫曲线的拟合,获得硝基甲烷分子不同振动模式的振动失相时间.结果表明CH键伸缩振动比CN键伸缩振动更容易受热声子的影响.在热加载下,硝基甲烷分子的CH键有望首先被激发并引起初始化学反应.
-
关键词:
- 含能材料 /
- 分子振动 /
- 相干反斯托克斯拉曼散射光谱 /
- 失相时间
The initial decomposition micro-mechanism of energetic materials has attracted much attention because it is a critical factor for the safe use of energetic materials. The thermally triggered chemical reactions are usually related to the vibrational properties of molecules. A time-resolved coherent anti-Stokes Raman scattering (CARS) spectrum system is constructed to study the molecular coherent vibrational dynamics of nitromethane at a microscopic level for clarifying the relation of molecular vibration to initial chemical reaction. In this experiment, the ultra-continuous white light is used as Stokes light, and the CARS spectra of different vibrational modes can be obtained by adjusting the time delay of the Stokes light. The vibrational dephasing time of different chemical bonds in nitromethane is provided by fitting the vibrational relaxation curves. The dephasing time of the CH stretching vibration located at 3000 cm-1 is shown to be 0.18 ps, which is far less than the dephasing time 6.2 ps of the CN stretching vibration located at 917 cm-1. The vibrational dephasing time is closely related to thermal collision for liquid nitromethane system without intermolecular hydrogen bond, that is, the scattering of thermal phonons causes the dephasing of coherent vibration. Therefore, the stretching vibration of the CH bond is more easily affected by the thermal phonon than the stretching vibration of the CN bond. The CH bond of nitromethane molecule is expected to be excited first, causing an initial chemical reaction under thermal loading.-
Keywords:
- energetic materials /
- molecular vibration /
- coherent anti-Stokes Raman scattering spectra /
- dephasing time
[1] Peng Y J, Ye Y Q 2015 Chemistry 78 693 (in Chinese)[彭亚晶,叶玉清 2015 化学通报 78 693]
[2] Conner R W, Dlott D D 2012 J. Phys. Chem. C 116 14737
[3] Rossi C, Zhang K L, Estve D, Alphonse P 2007 J. Microelectromech. Syst. 16 919
[4] Peng Y J, Song Y F, Cai K D 2015 Nanoaluminum Composite Energetic Materials (Beijing: Chemical Industry Press) p46 (in Chinese)[彭亚晶, 宋云飞, 蔡克迪 2015 纳米铝复合含能材料 (北京: 化学工业出版社) 第46页]
[5] Liu Y, Jiang Y T, Zhang T L, Feng C G, Yang L 2015 J. Therm. Anal. Calorim. 119 659
[6] Pagoria P F, Lee G S, Mitchell A R, Schmidt R D 2002 Thermochim. Acta 384 187
[7] Sikder A, Sikder N 2004 J. Hazard. Mater. 112 1
[8] Badgujar D, Talawar M, Asthana S, Mahulikar P 2008 J. Hazard. Mater. 151 289
[9] Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B 2009 J. Hazard. Mater. 161 589
[10] Namboodiri V V, Ahmed M, Podagatlapalli G K, Singh A K 2015 Proc. Indian Natl. Sci. Acad. 81 525
[11] Wu H L, Song Y F, Yu G Y, Chen X L, Yang Y Q 2016 J. Raman Spectrosc. 47 1213
[12] Duan X H, Li W P, Pei C H, Zhou X Q 2013 J. Mol. Model. 19 3893
[13] Shan T, Thompson A P 2014 J. Phys. Conf. Ser. 500 172009
[14] Chu G B, Shui M, Song Y F, Xu T, Gu Y Q, Yang Y Q 2015 J. Chem. Phys. 28 49
[15] Cianetti S, Negrerie M, Vos M H, Martin J L, Kruglik S G 2004 J. Am. Chem. Soc. 126 13932
[16] Chan P Y, Kwok W M, Lam S K, Phillips D L 2005 J. Am. Chem. Soc. 127 8246
[17] Winey J M, Gupta Y M 1997 J. Phys. Chem. B 101 10733
[18] Winey J M, Duvall G E, Knudson M D, Gupta Y M 2000 J. Chem. Phys. 113 7492
[19] Cataliotti R S, Foggi P, Giorgini M G, Mariani L, Morresi A, Paliani G 1993 J. Chem. Phys. 98 4372
[20] Hill J R, Moore D S, Schmidt S C, Storm C B 1991 J. Chem. Phys. 95 3039
[21] Shkurinov A, Jonusauskast G, Rulliere C 1994 J. Raman Spectrosc. 25 359
[22] Dogariu A, Pidwerbetsky A 2012 Lasers, Sources, and Related Photonic Devices, OSA Technical Digest pLM1B.2
[23] Guray T, Franken J, Hambir S A, Hare D E, Dlott D D 1997 Phys. Rev. Letts. 78 4585
[24] Yang Y, Hambir A A, Dlott D D 2002 Shock Waves 12 129
[25] Yang Y Q, Sun Z Y, Wang S F, Dlott D D 2003 J. Phys. Chem. B 107 4485
[26] Merrick J P, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683
[27] Pangilinan G I, Gupta Y M 1994 J. Phys. Chem. 98 4522
[28] Megyes T, Blint S, Grsz T, Radnai T, Bak I 2007 J. Chem. Phys. 126 164507
-
[1] Peng Y J, Ye Y Q 2015 Chemistry 78 693 (in Chinese)[彭亚晶,叶玉清 2015 化学通报 78 693]
[2] Conner R W, Dlott D D 2012 J. Phys. Chem. C 116 14737
[3] Rossi C, Zhang K L, Estve D, Alphonse P 2007 J. Microelectromech. Syst. 16 919
[4] Peng Y J, Song Y F, Cai K D 2015 Nanoaluminum Composite Energetic Materials (Beijing: Chemical Industry Press) p46 (in Chinese)[彭亚晶, 宋云飞, 蔡克迪 2015 纳米铝复合含能材料 (北京: 化学工业出版社) 第46页]
[5] Liu Y, Jiang Y T, Zhang T L, Feng C G, Yang L 2015 J. Therm. Anal. Calorim. 119 659
[6] Pagoria P F, Lee G S, Mitchell A R, Schmidt R D 2002 Thermochim. Acta 384 187
[7] Sikder A, Sikder N 2004 J. Hazard. Mater. 112 1
[8] Badgujar D, Talawar M, Asthana S, Mahulikar P 2008 J. Hazard. Mater. 151 289
[9] Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B 2009 J. Hazard. Mater. 161 589
[10] Namboodiri V V, Ahmed M, Podagatlapalli G K, Singh A K 2015 Proc. Indian Natl. Sci. Acad. 81 525
[11] Wu H L, Song Y F, Yu G Y, Chen X L, Yang Y Q 2016 J. Raman Spectrosc. 47 1213
[12] Duan X H, Li W P, Pei C H, Zhou X Q 2013 J. Mol. Model. 19 3893
[13] Shan T, Thompson A P 2014 J. Phys. Conf. Ser. 500 172009
[14] Chu G B, Shui M, Song Y F, Xu T, Gu Y Q, Yang Y Q 2015 J. Chem. Phys. 28 49
[15] Cianetti S, Negrerie M, Vos M H, Martin J L, Kruglik S G 2004 J. Am. Chem. Soc. 126 13932
[16] Chan P Y, Kwok W M, Lam S K, Phillips D L 2005 J. Am. Chem. Soc. 127 8246
[17] Winey J M, Gupta Y M 1997 J. Phys. Chem. B 101 10733
[18] Winey J M, Duvall G E, Knudson M D, Gupta Y M 2000 J. Chem. Phys. 113 7492
[19] Cataliotti R S, Foggi P, Giorgini M G, Mariani L, Morresi A, Paliani G 1993 J. Chem. Phys. 98 4372
[20] Hill J R, Moore D S, Schmidt S C, Storm C B 1991 J. Chem. Phys. 95 3039
[21] Shkurinov A, Jonusauskast G, Rulliere C 1994 J. Raman Spectrosc. 25 359
[22] Dogariu A, Pidwerbetsky A 2012 Lasers, Sources, and Related Photonic Devices, OSA Technical Digest pLM1B.2
[23] Guray T, Franken J, Hambir S A, Hare D E, Dlott D D 1997 Phys. Rev. Letts. 78 4585
[24] Yang Y, Hambir A A, Dlott D D 2002 Shock Waves 12 129
[25] Yang Y Q, Sun Z Y, Wang S F, Dlott D D 2003 J. Phys. Chem. B 107 4485
[26] Merrick J P, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683
[27] Pangilinan G I, Gupta Y M 1994 J. Phys. Chem. 98 4522
[28] Megyes T, Blint S, Grsz T, Radnai T, Bak I 2007 J. Chem. Phys. 126 164507
计量
- 文章访问数: 7129
- PDF下载量: 144
- 被引次数: 0