搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速850 nm垂直腔面发射激光器的优化设计与外延生长

周广正 尧舜 于洪岩 吕朝晨 王青 周天宝 李颖 兰天 夏宇 郎陆广 程立文 董国亮 康联鸿 王智勇

引用本文:
Citation:

高速850 nm垂直腔面发射激光器的优化设计与外延生长

周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇

Optimized design and epitaxy growth of high speed 850 nm vertical-cavity surface-emitting lasers

Zhou Guang-Zheng, Yao Shun, Yu Hong-Yan, Lü Zhao-Chen, Wang Qing, Zhou Tian-Bao, Li Ying, Lan Tian, Xia Yu, Lang Lu-Guang, Cheng Li-Wen, Dong Guo-Liang, Kang Lian-Hong, Wang Zhi-Yong
PDF
导出引用
  • 利用传输矩阵理论和TFCalc薄膜设计软件分析了分布布拉格反射镜和垂直腔面发射激光器(VCSEL)的反射率谱特性,对比了从谐振腔入射与从表面入射时反射率谱的差异,为白光反射谱表征VCSEL外延片提供了依据.利用Crosslight软件模拟了InGaAs/AlGaAs应变量子阱的增益谱随温度的变化特性及VCSEL器件内部温度分布,设计了增益-腔模调谐的VCSEL.采用金属有机物化学气相淀积设备外延生长了顶发射VCSEL,制作了氧化孔径为7.5 m的氧化限制型VCSEL器件,测试了器件的直流特性、光谱特性和眼图特性;6 mA,2.5 V偏置条件下输出光功率达5 mW,4级脉冲幅度调制传输速率达50 Gbit/s.
    Using transfer matrix method and TFcalc thin film design software,the reflectance spectrum of distributed Bragg reflector (DBR) and vertical cavity surface emitting laser (VCSEL) are simulated.The reflectance spectra from the cavity and surface are compared with each other,thus providing the basis for white light source (WLS) optical reflectance spectrum of the VCSEL epitaxial wafer.When using WLS to characterize VCSEL wafer,it is necessary to combine the simulation results and the shape of optical reflectance spectrum to speculate the reflectance seen from the cavity.The influences of different cap layers on the reflectance of DBRs are discussed theoretically and experimentally.With a 1/4 GaAs cap layer,the reflectance reaches up to 97.8% seen from the cavity.This design can make the wavelength of the VCSEL etalon picked easily because of avoiding the influence of test noise. The active region has higher heat accumulation due to the small area and poor thermal conductivity.The characteristics of the gain spectrum of InGaAs/AlGaAs strained quantum well (QW) under different temperatures and the temperature distribution in VCSEL are simulated by Crosslight software.The gain-to-cavity wavelength detuning is used to improve the slope efficiency and the temperature stability.The temperature in active region ranges from 360 K to 370 K.The gain peak wavelength and the Fabry-Perot cavity wavelength are designed in the ranges of 829-832 nm and 845-847 nm,respectively.Epitaxial wafer with top-emitting VCSEL structure grown by metal-organic chemical vapor deposition is characterized.The room temperature photoluminescence peak is at 827.5 nm and the etalon cavity wavelength measured by optical reflectance is 847.7 nm,which are consistent with designed values. The oxide restricted VCSELs with 7.5 m oxide aperture are fabricated.The image of the infrared light source CCD shows that the oxide aperture is circular.A passivation layer of 120 nm SiO2 is finally deposited to insulate water vapor.The threshold current is 0.8 mA,and the maximum output power reaches up to 9 mW at 13.5 mA.The optical spectrum at 6.0 mA reveals multiple transverse modes.The center wavelength is 852.3 nm and the root mean square (RMS) spectrum width is 0.6 nm,meeting the high-speed Datacom standards.Shannon theory indicates that the maximum data rate is not only proportional to bandwidth but also related to signal-to-noise ratio (SNR).It is effective to reduce relative intensity noise and enhance the SNR by increasing output power.From the eye diagram of 25 Gbit/s on-off key VCSEL,it is demonstrated that fall time is 38.66 ps,rise time is 41.54 ps,SNR is 5.6,and jitter RMS is 1.57 ps.Clear eye opening is observed from eye diagram of 25 GBaud/s PAM-4 VCSEL,which indicates the qualified 50 Gbit/s high speed performance.
      通信作者: 尧舜, yaoshun_bjut@126.com
      Corresponding author: Yao Shun, yaoshun_bjut@126.com
    [1]

    Saha A K, Islam S 2009 Opt. Quant. Electron 41 873

    [2]

    Moser P 2015 Ph. D. Dissertation (Berlin:Technische Universitt Berlin)

    [3]

    Li T, Ning Y Q, Hao E J, Cui J J, Zhang Y, Liu G Y, Qin L, Liu Y, Wang L J, Cui D F, Xu Z Y 2009 Sci. China Ser F:Inform. Sci. 52 1226

    [4]

    Wang Y H, Bo B X 2013 Chin. J. Lumin. 34 184

    [5]

    Blokhin S A, Bobrov M A, Maleev N A, Kuzmenkov A G, Sakharov A V, Blokhin A A, Moser P, Lott J A, Bimberg D, Usinov V M 2014 Appl. Phys. Lett. 105 061104

    [6]

    Moser P, Lott J A, Bimberg D 2013 IEEE J. Sel. Top. Quantum Electron. 19 1702212

    [7]

    Westbergh P, Gustavsson J S, Kgel B, Haglund , Larsson A 2011 IEEE J. Sel. Top. Quantum Electron. 17 1603

    [8]

    Feng Y, Hao Y Q, Wang X T, Liu G J, Yan C L, Zhang J B, Li Z J, Li Y 2017 Chin. Laser J. 44 47 (in Chinese)[冯源, 郝永芹, 王宪涛, 刘国军, 晏长岭, 张家斌, 李再金, 李洋 2017 中国激光 44 47]

    [9]

    Kuchta D M, Rylyakov A V, Doany F E, Schow C L, Proesel J E, Baks C W, Westbergh P, Gustavsson J S, Larsson A 2015 IEEE Photon. Technol. Lett. 27 577

    [10]

    Coldren L A, Corzine S W, Maanovi M L 2012 Diode Lasers and Photonic Integrated Circuits, Second Edition (New Jersey:John Wiley Sons, Inc.) pp288-298

    [11]

    Blakemore J S 1982 J. Appl. Phys. 53 123

    [12]

    Casey H C, Sell D D, Wecht K W 1975 J. Appl. Phys. 46 250

    [13]

    Zhang Y M, Zhong J C, Zhao Y J, Hao Y Q, Li L, Wang Y X, Su W 2005 Chin. J. Semicond. 5 1024 (in Chinese)[张永明, 钟景昌, 赵英杰, 郝永芹, 李林, 王玉霞, 苏伟 2005 半导体学报 5 1024]

    [14]

    Zhang X, Zhang Y, Zhang J W, Zhong C Y, Huang Y W, Ning Y Q, Gu S H, Wang L J 2016 Acta Phys. Sin. 65 134204 (in Chinese)[张星, 张奕, 张建伟, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军 2016 物理学报 65 134204]

    [15]

    Cui M, Han J, Deng J, Li J J, Xing Y H, Chen X, Zhu Q F 2015 Semicond. Optoelectron. 36 38 (in Chinese)[崔明, 韩军, 邓军, 李建军, 邢艳辉, 陈翔, 朱启发 2015 半导体光电 36 38]

    [16]

    Li L, Zhong J C, Zhang Y M, Zhao Y J, Wang Y, Liu W L, Hao Y Q, Su W, Yan C L 2005 Atca Photon. Sin. 3 343 (in Chinese)[李林, 钟景昌, 张永明, 赵英杰, 王勇, 刘文莉, 郝永琴, 苏伟, 晏长岭 2005 光子学报 3 343]

    [17]

    Zhang J W, Ning Y Q, Zhang X, Zeng Y G, Zhang J, Liu Y, Qin L, Wang L J 2013 Chin. Laser J. 40 6 (in Chinese)[张建伟, 宁永强, 张星, 曾玉刚, 张建, 刘云, 秦莉, 王立军 2013 中国激光 40 6]

    [18]

    Chen M, Guo X, Guan B L, Deng J, Dong L M, Shen G D 2006 Acta Phys. Sin. 55 5842 (in Chinese)[陈敏, 郭霞, 关宝璐, 邓军, 董立闽, 沈光地 2006 物理学报 55 5842]

    [19]

    Szczerba K, Lengyel T, Karlsson M, Andrekson P A, Larsson A 2016 IEEE Photon. Technol. Lett. 28 2519

    [20]

    Wang J Y, Murty M V R, Wang C, Hui D, Harren A L, Chang H H, Feng Z W, Fanning T R, Sridhara A, Taslim S, Cai X L, Chu J, Giovane L 2017 Proc. SPIE 10122 1012202

    [21]

    Li H, Wolf P, Jia X W, Lott J A, Bimberg D 2017 Appl. Phys. Lett. 111 243508

    [22]

    Larisch G, Moser P, Lott J A, Bimberg D 2017 IEEE J. Quantum Electron. 53 2400908

    [23]

    Dalir H, Koyama F 2013 Appl. Phys. Lett. 103 091109

    [24]

    Kao H Y, Chi Y C, Peng C Y, Leong S F, Chang C K, Wu Y C, Shih T T, Huang J J, Kuo H C, Cheng W H, Wu C H, Lin G R 2017 IEEE J. Quantum Electron. 53 8000408

  • [1]

    Saha A K, Islam S 2009 Opt. Quant. Electron 41 873

    [2]

    Moser P 2015 Ph. D. Dissertation (Berlin:Technische Universitt Berlin)

    [3]

    Li T, Ning Y Q, Hao E J, Cui J J, Zhang Y, Liu G Y, Qin L, Liu Y, Wang L J, Cui D F, Xu Z Y 2009 Sci. China Ser F:Inform. Sci. 52 1226

    [4]

    Wang Y H, Bo B X 2013 Chin. J. Lumin. 34 184

    [5]

    Blokhin S A, Bobrov M A, Maleev N A, Kuzmenkov A G, Sakharov A V, Blokhin A A, Moser P, Lott J A, Bimberg D, Usinov V M 2014 Appl. Phys. Lett. 105 061104

    [6]

    Moser P, Lott J A, Bimberg D 2013 IEEE J. Sel. Top. Quantum Electron. 19 1702212

    [7]

    Westbergh P, Gustavsson J S, Kgel B, Haglund , Larsson A 2011 IEEE J. Sel. Top. Quantum Electron. 17 1603

    [8]

    Feng Y, Hao Y Q, Wang X T, Liu G J, Yan C L, Zhang J B, Li Z J, Li Y 2017 Chin. Laser J. 44 47 (in Chinese)[冯源, 郝永芹, 王宪涛, 刘国军, 晏长岭, 张家斌, 李再金, 李洋 2017 中国激光 44 47]

    [9]

    Kuchta D M, Rylyakov A V, Doany F E, Schow C L, Proesel J E, Baks C W, Westbergh P, Gustavsson J S, Larsson A 2015 IEEE Photon. Technol. Lett. 27 577

    [10]

    Coldren L A, Corzine S W, Maanovi M L 2012 Diode Lasers and Photonic Integrated Circuits, Second Edition (New Jersey:John Wiley Sons, Inc.) pp288-298

    [11]

    Blakemore J S 1982 J. Appl. Phys. 53 123

    [12]

    Casey H C, Sell D D, Wecht K W 1975 J. Appl. Phys. 46 250

    [13]

    Zhang Y M, Zhong J C, Zhao Y J, Hao Y Q, Li L, Wang Y X, Su W 2005 Chin. J. Semicond. 5 1024 (in Chinese)[张永明, 钟景昌, 赵英杰, 郝永芹, 李林, 王玉霞, 苏伟 2005 半导体学报 5 1024]

    [14]

    Zhang X, Zhang Y, Zhang J W, Zhong C Y, Huang Y W, Ning Y Q, Gu S H, Wang L J 2016 Acta Phys. Sin. 65 134204 (in Chinese)[张星, 张奕, 张建伟, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军 2016 物理学报 65 134204]

    [15]

    Cui M, Han J, Deng J, Li J J, Xing Y H, Chen X, Zhu Q F 2015 Semicond. Optoelectron. 36 38 (in Chinese)[崔明, 韩军, 邓军, 李建军, 邢艳辉, 陈翔, 朱启发 2015 半导体光电 36 38]

    [16]

    Li L, Zhong J C, Zhang Y M, Zhao Y J, Wang Y, Liu W L, Hao Y Q, Su W, Yan C L 2005 Atca Photon. Sin. 3 343 (in Chinese)[李林, 钟景昌, 张永明, 赵英杰, 王勇, 刘文莉, 郝永琴, 苏伟, 晏长岭 2005 光子学报 3 343]

    [17]

    Zhang J W, Ning Y Q, Zhang X, Zeng Y G, Zhang J, Liu Y, Qin L, Wang L J 2013 Chin. Laser J. 40 6 (in Chinese)[张建伟, 宁永强, 张星, 曾玉刚, 张建, 刘云, 秦莉, 王立军 2013 中国激光 40 6]

    [18]

    Chen M, Guo X, Guan B L, Deng J, Dong L M, Shen G D 2006 Acta Phys. Sin. 55 5842 (in Chinese)[陈敏, 郭霞, 关宝璐, 邓军, 董立闽, 沈光地 2006 物理学报 55 5842]

    [19]

    Szczerba K, Lengyel T, Karlsson M, Andrekson P A, Larsson A 2016 IEEE Photon. Technol. Lett. 28 2519

    [20]

    Wang J Y, Murty M V R, Wang C, Hui D, Harren A L, Chang H H, Feng Z W, Fanning T R, Sridhara A, Taslim S, Cai X L, Chu J, Giovane L 2017 Proc. SPIE 10122 1012202

    [21]

    Li H, Wolf P, Jia X W, Lott J A, Bimberg D 2017 Appl. Phys. Lett. 111 243508

    [22]

    Larisch G, Moser P, Lott J A, Bimberg D 2017 IEEE J. Quantum Electron. 53 2400908

    [23]

    Dalir H, Koyama F 2013 Appl. Phys. Lett. 103 091109

    [24]

    Kao H Y, Chi Y C, Peng C Y, Leong S F, Chang C K, Wu Y C, Shih T T, Huang J J, Kuo H C, Cheng W H, Wu C H, Lin G R 2017 IEEE J. Quantum Electron. 53 8000408

  • [1] 于洪岩, 尧舜, 张红梅, 王青, 张杨, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇, 周天宝, 康联鸿, 王智勇, 董国亮. 940 nm垂直腔面发射激光器的设计及制备. 物理学报, 2019, 68(6): 064207. doi: 10.7498/aps.68.20181822
    [2] 李建军. 近800 nm波长张应变GaAsP/AlGaAs量子阱激光器有源区的设计. 物理学报, 2018, 67(6): 067801. doi: 10.7498/aps.67.20171816
    [3] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [4] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [5] 魏来明, 周远明, 俞国林, 高矿红, 刘新智, 林铁, 郭少令, 戴宁, 褚君浩, Austing David Guy. 高迁移率InGaAs/InP量子阱中的有效g因子. 物理学报, 2012, 61(12): 127102. doi: 10.7498/aps.61.127102
    [6] 李立, 刘红侠, 杨兆年. 量子阱Si/SiGe/Sip型场效应管阈值电压和沟道空穴面密度模型. 物理学报, 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [7] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [8] 孟维欣, 郝玉英, 许慧侠, 王华, 刘旭光, 许并社. 基于一种新型有机金属配合物的量子阱结构有机电致白光器件的性能研究. 物理学报, 2011, 60(9): 098102. doi: 10.7498/aps.60.098102
    [9] 郑莹莹, 邓海涛, 万静, 李超荣. 有机-无机杂化钙钛矿自组装量子阱结构的能带调控和光电性能的研究. 物理学报, 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [10] 关宝璐, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 郭霞, 沈光地. 具有宽调谐范围的微纳光机电系统可调谐垂直腔面发射激光器研究. 物理学报, 2011, 60(3): 034206. doi: 10.7498/aps.60.034206
    [11] 王宝强, 徐晨, 刘英明, 解意洋, 刘发, 赵振波, 周康, 沈光地. 光子晶体垂直腔面发射激光器的电流分布研究. 物理学报, 2010, 59(12): 8542-8547. doi: 10.7498/aps.59.8542
    [12] 李建军, 杨臻, 韩军, 邓军, 邹德恕, 康玉柱, 丁亮, 沈光地. 用于POF的高性能共振腔发光二极管. 物理学报, 2009, 58(9): 6304-6307. doi: 10.7498/aps.58.6304
    [13] 王同喜, 关宝璐, 郭霞, 沈光地. 载流子输运和寄生参数对隧道再生双有源区垂直腔面发射激光器调制特性的影响. 物理学报, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [14] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [15] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化. 物理学报, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [16] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [17] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析. 物理学报, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [18] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
    [19] 卢励吾, 张砚华, 徐遵图, 徐仲英, 王占国, J.Wang, WeikunGe. 快速热处理对应变InGaAs/GaAs单量子阱激光二极管电子发射和DX中心的影响. 物理学报, 2002, 51(2): 367-371. doi: 10.7498/aps.51.367
    [20] 魏建华, 解士杰, 梅良模. 混合金属卤化物的超晶格与量子线特征. 物理学报, 2000, 49(11): 2254-2260. doi: 10.7498/aps.49.2254
计量
  • 文章访问数:  4448
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-29
  • 修回日期:  2018-03-12
  • 刊出日期:  2019-05-20

高速850 nm垂直腔面发射激光器的优化设计与外延生长

  • 1. 北京工业大学激光工程研究院, 北京 100124;
  • 2. 华芯半导体科技有限公司, 泰州 225599;
  • 3. 扬州大学物理科学与技术学院, 扬州 225002
  • 通信作者: 尧舜, yaoshun_bjut@126.com

摘要: 利用传输矩阵理论和TFCalc薄膜设计软件分析了分布布拉格反射镜和垂直腔面发射激光器(VCSEL)的反射率谱特性,对比了从谐振腔入射与从表面入射时反射率谱的差异,为白光反射谱表征VCSEL外延片提供了依据.利用Crosslight软件模拟了InGaAs/AlGaAs应变量子阱的增益谱随温度的变化特性及VCSEL器件内部温度分布,设计了增益-腔模调谐的VCSEL.采用金属有机物化学气相淀积设备外延生长了顶发射VCSEL,制作了氧化孔径为7.5 m的氧化限制型VCSEL器件,测试了器件的直流特性、光谱特性和眼图特性;6 mA,2.5 V偏置条件下输出光功率达5 mW,4级脉冲幅度调制传输速率达50 Gbit/s.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回