搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大幅度增加弛豫振荡频率来实现毫米级外腔半导体激光器的外腔机制转换

王永胜 赵彤 王安帮 张明江 王云才

引用本文:
Citation:

大幅度增加弛豫振荡频率来实现毫米级外腔半导体激光器的外腔机制转换

王永胜, 赵彤, 王安帮, 张明江, 王云才

Conversion of external cavity mechanism of millimeter-level external cavity semiconductor laser by significantly increasing relaxation oscillation frequency

Wang Yong-Sheng, Zhao Tong, Wang An-Bang, Zhang Ming-Jiang, Wang Yun-Cai
PDF
导出引用
  • 混沌外腔半导体激光器输出明显存在弛豫振荡特征,弛豫振荡频率小于外腔振荡频率时,外腔半导体激光器输出态是短腔机制;反之,外腔半导体激光器输出态是长腔机制.首先对比分析了弛豫振荡频率为5.6 GHz,腔长对频谱有效带宽的影响.然后同时调节注入电流和载流子寿命来大幅度地增加弛豫振荡频率.最后在弛豫振荡频率为40 GHz、腔长为毫米级(4–20 mm)时,实现由短腔机制到长腔机制的转换,进而分析了外腔反馈率和外腔长对外腔半导体激光器频谱带宽的影响.分析结果表明:短腔机制下,输出混沌态不稳定,0.1 mm的偏差就会导致混沌态与非混沌态之间的转化;长腔机制下,输出混沌态稳定,输出混沌区域较大,证明长腔机制下更有益于获得宽带连续的混沌区域.在弛豫振荡频率为40 GHz、外腔长度为毫米级时,实现了外腔半导体激光器的长腔机制,从而增大了高带宽混沌的参数空间.
    Optical chaos has conducted in-depth investigation and attracted widespread attention in recent years,owing to its important applications in chaos-based secure communication,fast physical random bit generation,chaotic laser radar, lidar,chaotic optical time domain reflectometer,distance measurement,and optical fiber sensor.The key to these applications is a compact and broadband chaotic light source,because the integrated circuits have an advantage over those setups composed of discrete components in some unique virtues such as smaller size,lower cost,better stability, and better reproducibility via mass production.In order to combine the advantages of the chaotic application and integrated circuits,the integrated chaotic external-cavity semiconductor laser has aroused great interest.Note that, the integrated chaotic external-cavity semiconductor laser can work in both short-and long-cavity mechanisms,which depends on the laser relaxation oscillation frequency.The output of chaotic external cavity semiconductor laser has obvious relaxation oscillation characteristic.When the relaxation oscillation frequency is less than the external-cavity oscillation frequency,the external-cavity semiconductor laser works in short-cavity mechanism.Otherwise,it works in long-cavity mechanism.In this paper,we comparatively analyze the effects of fine-tuning cavity length on the effective bandwidth of the integrated external-cavity semiconductor laser under both short-and long-cavity mechanisms.First,we comparatively analyze the effects of fine-tuning cavity length and external-cavity feedback rate on the effective bandwidth of the integrated external-cavity semiconductor laser when relaxation oscillation frequency is 5.6 GHz. At the same time,the injection current and carrier lifetime are adjusted to observably increase the relaxation oscillation frequency.Finally,we comparatively analyze the effects of fine-tuning cavity length and external-cavity feedback rate on the effective bandwidth of the integrated external-cavity semiconductor laser when relaxation oscillation frequency is 40 GHz.Results show that for short-cavity mechanism,the chaotic output is not stable:0.1-mm deviation will lead to the conversion from chaotic state into non-chaotic state.By contrast,for the long-cavity mechanism,the chaotic output is more stable and has a larger chaotic area.It proves that the long-cavity mechanism is more feasible and conducive to the continuous achievement of a broadband chaotic laser and broadband continuous chaotic region.According to this feature,we realize the transition from short to long cavity regime by adjusting the injection current and carrier lifetime to substantially increase the relaxation oscillation frequency at the same time.We realize the transition from short to long cavity regime in a cavity length range from 2 mm to 10 mm,and then analyze the influences of the external cavity rate and external cavity length on the spectrum bandwidth of the external cavity semiconductor laser.The results show that under the long cavity mechanism,it is more conducive to the achievement of a broadband continuous chaotic region in a cavity lengt range from 4 mm to 20 mm.Considering the refractive index of integrated material,the external-cavity length for long-cavity mechanism can be shortened to a range from 1 mm to 2 mm.This length fully conforms to the butterfly packaging size.
      通信作者: 王安帮, wanganbang@tyut.edu.cn
    • 基金项目: 国家国际科技合作专项(批准号:2014DFA50870)和国家自然科学基金国家重大科研仪器研制项目(批准号:61527819)资助的\text{课题.}
      Corresponding author: Wang An-Bang, wanganbang@tyut.edu.cn
    • Funds: Project supported by the International Science and Technology Cooperation Program of China (Grant No. 2014DFA50870) and the National natural science foundation of National Major Scientific Instruments Development Project (Grant No. 61527819).
    [1]

    Sciamanna M, Shore K A 2015 Nature Photon. 9 151

    [2]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [3]

    Soriano M C, García-Ojalvo J, Mirasso C R, Fischer I 2013 Rev. Mod. Phys. 85 421

    [4]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nature Photon. 2 728

    [5]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [6]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815

    [7]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991

    [8]

    Wang A B, Wang N, Yang Y B, Wang B J, Zhang M J, Wang Y C 2012 J. Lightw. Technol. 30 3420

    [9]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636

    [10]

    Erzgräber H, Krauskopf B, Lenstra D, Fischer A, Vemuri G 2006 Phys. Rev. E 73 055201

    [11]

    Toomey J P, Kane D M, McMahon C, Argyris A, Syvridis D 2015 Opt. Express 23 18754

    [12]

    Koch T L, Koren U 1991 IEEE J. Quantum Electron. 27 641

    [13]

    Charbonneau S, Koteles E S, Poole P J, He J J, Aers G C, Haysom J, Buchanan M, Feng Y, Delage A, Yang F, Davies M, Goldberg R D, Piva P G, Mitchell I V 1998 IEEE J. Sel. Topics Quantum Electron. 4 772

    [14]

    Hofstetter D, Maisenhölder B, Zappe H P 1998 IEEE J. Sel. Topics Quantum Electron. 4 794

    [15]

    Bauer S, Brox O, Kreissl J, Sartorius B 2004 Phys. Rev. E 69 016206

    [16]

    Ushakov O, Bauer S, Brox O, Wnsche H J, Henneberger F 2004 Phys. Rev. Lett. 92 043902

    [17]

    Yousefi M, Barbarin Y, Beri S, Bente E A, Smit M K, Nötzel R, Lenstra D 2007 Phys. Rev. Lett. 98 044101

    [18]

    Argyris A, Hamacher M, Chlouverakis K E, Bogris A, Syvridis D 2008 Phys. Rev. Lett. 100 194101

    [19]

    Tronciu V Z, Ermakov Y, Colet P, Mirasso C R 2008 Opt. Commun. 281 4747

    [20]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [21]

    Sunada S, Harayama T, Arai K, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Opt. Express 19 5713

    [22]

    Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q, Xia G Q 2013 Opt. Express 21 23358

    [23]

    Liu D, Sun C, Xiong B, Luo Y 2014 Opt. Express 22 5614

    [24]

    Yu L Q, Lu D, Pan B W, Zhao L J, Wu J G, Xia G Q, Wu Z M, Wang W 2014 J. Lightw. Technol. 32 3595

    [25]

    Yee D S, Leem Y A, Kim S B, Kim D C, Park K H, Kim S T, Kim B G 2004 Opt. Lett. 29 2243

    [26]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [27]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [28]

    Takahashi R, Akizawa Y, Uchida A, Harayama T, Tsuzuki K, Sunada S, Arai K, Yoshimura K, Davis P 2014 Opt. Express 22 11727

    [29]

    Wnsche H, Bauer S, Kreissl J, Ushakov O, Korneyev N, Henneberger F, Wille E, Erzgräber H, Peil M, Elsäßer W, Fischer I 2005 Phys. Rev. Lett. 94 163901

    [30]

    Pérez T, Radziunas M, Wnsche H J, Mirasso C R, Henneberger F 2006 IEEE Photon. Technol. Lett. 18 2135

    [31]

    Argyris A, Grivas E, Hamacher M, Bogris A, Syvridis D 2010 Opt. Express 18 5188

    [32]

    Monfils I, Cartledge J C 2009 J. Lightw. Technol. 27 619

    [33]

    Sun Y, Pan J Q, Zhao L J, Chen W X, Wang W, Wang L, Zhao X F, Lou C Y 2010 J. Lightw. Technol. 28 2521

    [34]

    Sunada S, Shinohara S, Fukushima T, Harayama T 2016 Phys. Rev. Lett. 116 203903

    [35]

    Uchida A 2012 Applications of Nonlinear Dynamics and Synchronization

    [36]

    Bjerkan L, Royset A, Hafsker L, Myhre D 1996 J. Lightw. Technol. 14 839

    [37]

    Wen Y F 2012 Ph. D. Dissertation (McMaster University)

  • [1]

    Sciamanna M, Shore K A 2015 Nature Photon. 9 151

    [2]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [3]

    Soriano M C, García-Ojalvo J, Mirasso C R, Fischer I 2013 Rev. Mod. Phys. 85 421

    [4]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nature Photon. 2 728

    [5]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [6]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815

    [7]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991

    [8]

    Wang A B, Wang N, Yang Y B, Wang B J, Zhang M J, Wang Y C 2012 J. Lightw. Technol. 30 3420

    [9]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636

    [10]

    Erzgräber H, Krauskopf B, Lenstra D, Fischer A, Vemuri G 2006 Phys. Rev. E 73 055201

    [11]

    Toomey J P, Kane D M, McMahon C, Argyris A, Syvridis D 2015 Opt. Express 23 18754

    [12]

    Koch T L, Koren U 1991 IEEE J. Quantum Electron. 27 641

    [13]

    Charbonneau S, Koteles E S, Poole P J, He J J, Aers G C, Haysom J, Buchanan M, Feng Y, Delage A, Yang F, Davies M, Goldberg R D, Piva P G, Mitchell I V 1998 IEEE J. Sel. Topics Quantum Electron. 4 772

    [14]

    Hofstetter D, Maisenhölder B, Zappe H P 1998 IEEE J. Sel. Topics Quantum Electron. 4 794

    [15]

    Bauer S, Brox O, Kreissl J, Sartorius B 2004 Phys. Rev. E 69 016206

    [16]

    Ushakov O, Bauer S, Brox O, Wnsche H J, Henneberger F 2004 Phys. Rev. Lett. 92 043902

    [17]

    Yousefi M, Barbarin Y, Beri S, Bente E A, Smit M K, Nötzel R, Lenstra D 2007 Phys. Rev. Lett. 98 044101

    [18]

    Argyris A, Hamacher M, Chlouverakis K E, Bogris A, Syvridis D 2008 Phys. Rev. Lett. 100 194101

    [19]

    Tronciu V Z, Ermakov Y, Colet P, Mirasso C R 2008 Opt. Commun. 281 4747

    [20]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [21]

    Sunada S, Harayama T, Arai K, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Opt. Express 19 5713

    [22]

    Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q, Xia G Q 2013 Opt. Express 21 23358

    [23]

    Liu D, Sun C, Xiong B, Luo Y 2014 Opt. Express 22 5614

    [24]

    Yu L Q, Lu D, Pan B W, Zhao L J, Wu J G, Xia G Q, Wu Z M, Wang W 2014 J. Lightw. Technol. 32 3595

    [25]

    Yee D S, Leem Y A, Kim S B, Kim D C, Park K H, Kim S T, Kim B G 2004 Opt. Lett. 29 2243

    [26]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [27]

    Harayama T, Sunada S, Yoshimura K, Davis P, Tsuzuki K, Uchida A 2011 Phys. Rev. A 83 031803

    [28]

    Takahashi R, Akizawa Y, Uchida A, Harayama T, Tsuzuki K, Sunada S, Arai K, Yoshimura K, Davis P 2014 Opt. Express 22 11727

    [29]

    Wnsche H, Bauer S, Kreissl J, Ushakov O, Korneyev N, Henneberger F, Wille E, Erzgräber H, Peil M, Elsäßer W, Fischer I 2005 Phys. Rev. Lett. 94 163901

    [30]

    Pérez T, Radziunas M, Wnsche H J, Mirasso C R, Henneberger F 2006 IEEE Photon. Technol. Lett. 18 2135

    [31]

    Argyris A, Grivas E, Hamacher M, Bogris A, Syvridis D 2010 Opt. Express 18 5188

    [32]

    Monfils I, Cartledge J C 2009 J. Lightw. Technol. 27 619

    [33]

    Sun Y, Pan J Q, Zhao L J, Chen W X, Wang W, Wang L, Zhao X F, Lou C Y 2010 J. Lightw. Technol. 28 2521

    [34]

    Sunada S, Shinohara S, Fukushima T, Harayama T 2016 Phys. Rev. Lett. 116 203903

    [35]

    Uchida A 2012 Applications of Nonlinear Dynamics and Synchronization

    [36]

    Bjerkan L, Royset A, Hafsker L, Myhre D 1996 J. Lightw. Technol. 14 839

    [37]

    Wen Y F 2012 Ph. D. Dissertation (McMaster University)

  • [1] 戈杉杉, 王腾午, 戈静怡, 周沛, 李念强. 混沌光注入半导体激光器中极端事件的演变. 物理学报, 2023, 72(16): 164201. doi: 10.7498/aps.72.20230759
    [2] 刘远, 袁冀扬, 周心雨, 谷双全, 周沛, 穆鹏华, 李念强. 基于滤波反馈宽带平坦混沌信号的快速物理随机比特产生. 物理学报, 2022, 71(22): 224203. doi: 10.7498/aps.71.20221173
    [3] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号. 物理学报, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [4] 魏月, 樊利, 夏光琼, 陈于淋, 吴正茂. 基于混沌信号非相干光注入下两半导体激光器间的双向混沌通信. 物理学报, 2012, 61(22): 224203. doi: 10.7498/aps.61.224203
    [5] 丁灵, 吴正茂, 吴加贵, 夏光琼. 基于双光反馈半导体激光器的单向开环混沌同步通信. 物理学报, 2012, 61(1): 014212. doi: 10.7498/aps.61.014212
    [6] 梁君生, 武媛, 王安帮, 王云才. 利用频谱仪提取双反馈混沌半导体激光器的外腔长度密钥. 物理学报, 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [7] 萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才. 混沌半导体激光器的弛豫振荡频率对随机序列速率的影响. 物理学报, 2012, 61(15): 150502. doi: 10.7498/aps.61.150502
    [8] 丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂. 双光反馈半导体激光混沌系统中外腔延时反馈特征的抑制. 物理学报, 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [9] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [10] 张继兵, 张建忠, 杨毅彪, 梁君生, 王云才. 外腔半导体激光器随机数熵源的腔长分析. 物理学报, 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [11] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法. 物理学报, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [12] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [13] 张秀娟, 王冰洁, 杨玲珍, 王安帮, 郭东明, 王云才. 平坦宽带混沌激光的产生及同步. 物理学报, 2009, 58(5): 3203-3207. doi: 10.7498/aps.58.3203
    [14] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [15] 刘胜芳, 夏光琼, 吴加贵, 李林福, 吴正茂. 强光注入提高光反馈VCSELs混沌载波基频. 物理学报, 2008, 57(3): 1502-1505. doi: 10.7498/aps.57.1502
    [16] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [17] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [18] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [19] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [20] 刘 崇, 葛剑虹, 陈 军. 外腔反馈对半导体激光器振荡特性的影响. 物理学报, 2006, 55(10): 5211-5215. doi: 10.7498/aps.55.5211
计量
  • 文章访问数:  6891
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-16
  • 修回日期:  2017-06-25
  • 刊出日期:  2017-12-05

/

返回文章
返回