搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维物体多重菲涅耳计算全息水印与无干扰可控重建方法

陈家祯 郑子华 叶锋 连桂仁 许力

引用本文:
Citation:

三维物体多重菲涅耳计算全息水印与无干扰可控重建方法

陈家祯, 郑子华, 叶锋, 连桂仁, 许力

Multiple Fresnel computer-generated hologram watermark of three-dimensional object and its adjustable reconstruction without interference

Chen Jia-Zhen, Zheng Zi-Hua, Ye Feng, Lian Gui-Ren, Xu Li
PDF
导出引用
  • 提出了一种基于三维物体的多重菲涅耳计算全息水印方法.将水印信号作为虚拟三维物体的层面,首先结合分区复用层析法和菲涅耳双随机相位编码方法产生复噪声形式的水印信号;然后对水印信号的频谱作共轭对称处理实现实值编码;为减小对宿主全息图数字重建的影响,将水印信号的频谱设置于对宿主数字重建影响小的频谱非感兴趣区域;编码后的信号以一定强度叠加于宿主全息图,水印信号恢复无需原始宿主全息图信息,可实现盲提取,对宿主全息图重建像面的二维码可扫描识别.仿真测试结果表明,所提出的方法具有较好的透明性和稳健性,在宿主全息图遭受滤波、JPEG(联合图像专家小组)压缩、高斯噪声、剪切、旋转等各种攻击的情况下,不论对宿主还是水印信号仍具有良好的数字重建质量,对重建像面的二维码仍可扫描识别;而重建像面水印信号的无干扰可控重建后处理操作解决了不同层面水印信号之间的衍射干扰问题,提高了水印信号的重建质量.虚拟光学手段的应用丰富了水印信号设计方法并提升了算法的安全性.
    This paper presents a novel method of generating multiple Fresnel hologram watermarks of three-dimensional objects. Firstly, the original watermark signal is used as the layers of the virtual three-dimensional object, and the encrypted watermark signal is generated in the form of complex noise by using both the region multiplexing tomography and the Fresnel double random phase coding method. Then, the spectrum of the watermark signal is conjugate symmetrically arranged and inverse Fourier transform is performed to obtain the real-valued watermark. The spectrum of the watermark signal is set to be in a non-interested region of the host spectrum to reduce their influence on the digital reconstruction of the host hologram. Finally, the encoded watermark signal is superimposed on the host hologram with a certain intensity. The original host hologram is not required during watermark reconstruction, and blind extraction is achieved. The reconstructed quick response (QR) code from the host hologram can be scanned and identified. The simulation results show that the proposed scheme has good invisibility and robustness to various types of image attacking operations such as filtering, joint photographic experts group (JPEG) compression, Gaussian noise, cropping, and rotation. The proposed method has good digital reconstruction quality for both host hologram and watermark when suffering attacks, and the QR code in the reconstruction plane has good scan recognition. Diffraction interference problem among different watermark layers is solved by the controllable post-processing of the watermarks with adjustable reconstruction and no interference, and the watermark restruction quality is improved. Furthermore, the application of virtual optics enriches the watermarking signal design method and enhances the security of the algorithm.
      通信作者: 叶锋, yef279@sina.com
    • 基金项目: 福建省自然科学基金(批准号:2017J01739)和福建师范大学基金(批准号:I201601004,I201602015)资助的课题.
      Corresponding author: Ye Feng, yef279@sina.com
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2017J01739) and the Foundation of Fujian Normal University, China (Grant Nos. I201601004, I201602015).
    [1]

    Cox I J, Kilian J, Leighton F T, Shamoon T 1996 Audio and Video 3 243

    [2]

    Swanson M D, Zhu B, Tewfik A H, Boney L 1998 Signal Proc. 66 337

    [3]

    Niu X Q, Yang Y X (in Chinese)[钮心忻, 杨义先 2000 计算机学报 23 21]

    [4]

    Zhong H, Jiao L C (in Chinese)[钟桦, 焦李成 2002 计算机学报 25 1364]

    [5]

    Zeng G R, Qiu Z D 2010 Acta Phys. Sin. 59 5870 (in Chinese)[曾高荣, 裘正定 2010 物理学报 59 5870]

    [6]

    Chen J S, Chu D 2016 Appl. Opt. 55 127

    [7]

    Tay S, Blanche P A, Voorakaranam R, Tunç A V, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, St Hilaire P, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N 2008 Nature 451 694

    [8]

    Li J, L X D, Ma M F, Qin Y 2015 Acta Photon. Sin. 44 167

    [9]

    Zhang T, Yamaguchi I 1998 Opt. Lett. 23 1221

    [10]

    Kishk S, Javidi B 2003 Opt. Express 11 874

    [11]

    Tsang P W M, Poon T C, Chow Y T 2015 Opt. Commun. 341 188

    [12]

    Chen J Z, Zheng Z H, Ye F, Lian G R, Xu L (in Chinese)[陈家祯, 郑子华, 叶锋, 连桂仁, 许力 2015 激光与光电子学进展 12 72]

    [13]

    Situ G, Zhang J 2006 J. Opt. A:Pure Appl. Opt. 8 391

    [14]

    Xu N, Chen X L, Yang G 2013 Acta Phys. Sin. 62 084202 (in Chinese)[徐宁, 陈雪莲, 杨庚 2013 物理学报 62 084202]

    [15]

    Shi Y S, Zhang J J (in Chinese)[史祎诗, 张静娟 2009 光学学报 29 2705]

    [16]

    Li J C, Xiong B H 2011 Information Optics (Beijing:Science Press) p45 (in Chinese)[李俊昌, 熊秉衡 2011 信息光学教程(北京:科学出版社)第45页]

    [17]

    Liu W W, Dai Y Q, Kang X, Yang F J, He X Y (in Chinese)[刘雯雯, 戴宜全, 康新, 杨福俊, 何小元 2008 光学学报 28 856]

    [18]

    Shi Y, Situ G, Zhang J 2007 Opt. Lett. 32 1914

    [19]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767

    [20]

    Situ G, Zhang J 2004 Opt. Lett. 29 1584

    [21]

    Huang S J, Wang S Z, Yu Y J 2009 Acta Phys. Sin. 58 952 (in Chinese)[黄素娟, 王朔中, 于瀛洁 2009 物理学报 58 952]

    [22]

    Chen J Z, Zheng Z H, Lian G R (in Chinese)[陈家祯, 郑子华, 连桂仁 2014 激光与光电子学进展 51 75]

    [23]

    Li J C, Song Q H, Gui J B, Peng Z J, Lou Y L (in Chinese)[李俊昌, 宋庆和, 桂进斌, 彭祖杰, 楼宇丽 2011 光学学报 31 297]

    [24]

    Wang H N, Zhong W, Wang J, Xia D S 2004 J. Image Graphics. 9 828 (in Chinese)[王鸿南, 钟文, 汪静, 夏德深 2004 中国图象图形学报 9 828]

    [25]

    Xu Y, Carlinet E, Geraud T, Najman L 2017 IEEE Trans. Pattern Anal. Mach. Intellig. 39 457

    [26]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767

  • [1]

    Cox I J, Kilian J, Leighton F T, Shamoon T 1996 Audio and Video 3 243

    [2]

    Swanson M D, Zhu B, Tewfik A H, Boney L 1998 Signal Proc. 66 337

    [3]

    Niu X Q, Yang Y X (in Chinese)[钮心忻, 杨义先 2000 计算机学报 23 21]

    [4]

    Zhong H, Jiao L C (in Chinese)[钟桦, 焦李成 2002 计算机学报 25 1364]

    [5]

    Zeng G R, Qiu Z D 2010 Acta Phys. Sin. 59 5870 (in Chinese)[曾高荣, 裘正定 2010 物理学报 59 5870]

    [6]

    Chen J S, Chu D 2016 Appl. Opt. 55 127

    [7]

    Tay S, Blanche P A, Voorakaranam R, Tunç A V, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, St Hilaire P, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N 2008 Nature 451 694

    [8]

    Li J, L X D, Ma M F, Qin Y 2015 Acta Photon. Sin. 44 167

    [9]

    Zhang T, Yamaguchi I 1998 Opt. Lett. 23 1221

    [10]

    Kishk S, Javidi B 2003 Opt. Express 11 874

    [11]

    Tsang P W M, Poon T C, Chow Y T 2015 Opt. Commun. 341 188

    [12]

    Chen J Z, Zheng Z H, Ye F, Lian G R, Xu L (in Chinese)[陈家祯, 郑子华, 叶锋, 连桂仁, 许力 2015 激光与光电子学进展 12 72]

    [13]

    Situ G, Zhang J 2006 J. Opt. A:Pure Appl. Opt. 8 391

    [14]

    Xu N, Chen X L, Yang G 2013 Acta Phys. Sin. 62 084202 (in Chinese)[徐宁, 陈雪莲, 杨庚 2013 物理学报 62 084202]

    [15]

    Shi Y S, Zhang J J (in Chinese)[史祎诗, 张静娟 2009 光学学报 29 2705]

    [16]

    Li J C, Xiong B H 2011 Information Optics (Beijing:Science Press) p45 (in Chinese)[李俊昌, 熊秉衡 2011 信息光学教程(北京:科学出版社)第45页]

    [17]

    Liu W W, Dai Y Q, Kang X, Yang F J, He X Y (in Chinese)[刘雯雯, 戴宜全, 康新, 杨福俊, 何小元 2008 光学学报 28 856]

    [18]

    Shi Y, Situ G, Zhang J 2007 Opt. Lett. 32 1914

    [19]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767

    [20]

    Situ G, Zhang J 2004 Opt. Lett. 29 1584

    [21]

    Huang S J, Wang S Z, Yu Y J 2009 Acta Phys. Sin. 58 952 (in Chinese)[黄素娟, 王朔中, 于瀛洁 2009 物理学报 58 952]

    [22]

    Chen J Z, Zheng Z H, Lian G R (in Chinese)[陈家祯, 郑子华, 连桂仁 2014 激光与光电子学进展 51 75]

    [23]

    Li J C, Song Q H, Gui J B, Peng Z J, Lou Y L (in Chinese)[李俊昌, 宋庆和, 桂进斌, 彭祖杰, 楼宇丽 2011 光学学报 31 297]

    [24]

    Wang H N, Zhong W, Wang J, Xia D S 2004 J. Image Graphics. 9 828 (in Chinese)[王鸿南, 钟文, 汪静, 夏德深 2004 中国图象图形学报 9 828]

    [25]

    Xu Y, Carlinet E, Geraud T, Najman L 2017 IEEE Trans. Pattern Anal. Mach. Intellig. 39 457

    [26]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767

  • [1] 汤明玉, 武梦婷, 臧瑞环, 荣腾达, 杜艳丽, 马凤英, 段智勇, 弓巧侠. 菲涅耳非相干数字全息大视场研究. 物理学报, 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [2] 杨艳飞, 陈婧, 吴逢铁, 胡润, 张惠忠, 胡汉青. 像散Bessel光束自重建特性的理论和实验研究. 物理学报, 2018, 67(22): 224201. doi: 10.7498/aps.67.20181416
    [3] 任志君, 李晓东, 金洪震, 施逸乐, 杨照清. 双Pearcey光束的构建及数学机理研究. 物理学报, 2016, 65(21): 214208. doi: 10.7498/aps.65.214208
    [4] 阳静, 吴学成, 吴迎春, 姚龙超, 陈玲红, 邱坤赞, 岑可法. 数字显微全息重建图像的景深扩展研究. 物理学报, 2015, 64(11): 114209. doi: 10.7498/aps.64.114209
    [5] 谷婷婷, 黄素娟, 闫成, 缪庄, 常征, 王廷云. 基于数字全息图的光纤折射率测量研究. 物理学报, 2015, 64(6): 064204. doi: 10.7498/aps.64.064204
    [6] 范锋, 栗军香, 宋修法, 朱巧芬, 王华英. 基于Hilbert变换实现数字全息高精度相位重建. 物理学报, 2014, 63(19): 194207. doi: 10.7498/aps.63.194207
    [7] 石炳川, 朱竹青, 王晓雷, 席思星, 贡丽萍. 像面数字全息的重建相位误差分析和改善. 物理学报, 2014, 63(24): 244201. doi: 10.7498/aps.63.244201
    [8] 刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴. 小宽带光谱色散匀滑光束传输特性研究. 物理学报, 2014, 63(16): 164201. doi: 10.7498/aps.63.164201
    [9] 李俊昌, 楼宇丽, 桂进斌, 彭祖杰, 宋庆和. 数字全息图取样模型的简化研究. 物理学报, 2013, 62(12): 124203. doi: 10.7498/aps.62.124203
    [10] 周文静, 胡文涛, 瞿惠, 朱亮, 于瀛洁. 单幅层析全息图的记录及数据重建. 物理学报, 2012, 61(16): 164212. doi: 10.7498/aps.61.164212
    [11] 李俊昌. 数字全息重建图像的焦深研究. 物理学报, 2012, 61(13): 134203. doi: 10.7498/aps.61.134203
    [12] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像. 物理学报, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [13] 李俊昌, 彭祖杰, Tankam Patrice, Picart Pascal. 散射光彩色数字全息光学系统及波面重建算法研究. 物理学报, 2010, 59(7): 4646-4655. doi: 10.7498/aps.59.4646
    [14] 李俊昌, 樊则宾. 彩色数字全息的非插值波面重建算法研究. 物理学报, 2010, 59(4): 2457-2461. doi: 10.7498/aps.59.2457
    [15] 周文静, 胡文涛, 郭路, 徐强胜, 于瀛洁. 少量投影数字全息层析重建实验研究. 物理学报, 2010, 59(12): 8499-8511. doi: 10.7498/aps.59.8499
    [16] 严敏逸, 王旦清, 马忠元, 姚尧, 刘广元, 李伟, 黄信凡, 陈坤基, 徐骏, 徐岭. 二维移相光栅光强分布的计算及在制备有序纳米硅阵列中的应用. 物理学报, 2010, 59(5): 3205-3209. doi: 10.7498/aps.59.3205
    [17] 李俊昌, 张亚萍, 许蔚. 高质量数字全息波面重建系统研究. 物理学报, 2009, 58(8): 5385-5391. doi: 10.7498/aps.58.5385
    [18] 于瀛洁, 王涛, 郑华东. 基于数字闪耀光栅的位相全息图光电再现优化. 物理学报, 2009, 58(5): 3154-3160. doi: 10.7498/aps.58.3154
    [19] 王淮生. 啁啾超短脉冲光波照射下光栅Talbot效应的研究. 物理学报, 2005, 54(12): 5688-5691. doi: 10.7498/aps.54.5688
    [20] 肖体乔, 徐洪杰, 张映箕, 陈建文, 徐至展. 利用数字重现电子全息图观测微电磁场分布. 物理学报, 1998, 47(9): 1450-1457. doi: 10.7498/aps.47.1450
计量
  • 文章访问数:  3228
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-05
  • 修回日期:  2017-07-05
  • 刊出日期:  2017-12-05

三维物体多重菲涅耳计算全息水印与无干扰可控重建方法

  • 1. 福建师范大学数学与信息学院, 福州 350007
  • 通信作者: 叶锋, yef279@sina.com
    基金项目: 福建省自然科学基金(批准号:2017J01739)和福建师范大学基金(批准号:I201601004,I201602015)资助的课题.

摘要: 提出了一种基于三维物体的多重菲涅耳计算全息水印方法.将水印信号作为虚拟三维物体的层面,首先结合分区复用层析法和菲涅耳双随机相位编码方法产生复噪声形式的水印信号;然后对水印信号的频谱作共轭对称处理实现实值编码;为减小对宿主全息图数字重建的影响,将水印信号的频谱设置于对宿主数字重建影响小的频谱非感兴趣区域;编码后的信号以一定强度叠加于宿主全息图,水印信号恢复无需原始宿主全息图信息,可实现盲提取,对宿主全息图重建像面的二维码可扫描识别.仿真测试结果表明,所提出的方法具有较好的透明性和稳健性,在宿主全息图遭受滤波、JPEG(联合图像专家小组)压缩、高斯噪声、剪切、旋转等各种攻击的情况下,不论对宿主还是水印信号仍具有良好的数字重建质量,对重建像面的二维码仍可扫描识别;而重建像面水印信号的无干扰可控重建后处理操作解决了不同层面水印信号之间的衍射干扰问题,提高了水印信号的重建质量.虚拟光学手段的应用丰富了水印信号设计方法并提升了算法的安全性.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回