搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菲涅耳非相干数字全息大视场研究

汤明玉 武梦婷 臧瑞环 荣腾达 杜艳丽 马凤英 段智勇 弓巧侠

引用本文:
Citation:

菲涅耳非相干数字全息大视场研究

汤明玉, 武梦婷, 臧瑞环, 荣腾达, 杜艳丽, 马凤英, 段智勇, 弓巧侠

Fresnel incoherent digital holography with large field-of-view

Tang Ming-Yu, Wu Meng-Ting, Zang Rui-Huan, Rong Teng-Da, Du Yan-Li, Ma Feng-Ying, Duan Zhi-Yong, Gong Qiao-Xia
PDF
HTML
导出引用
  • 菲涅尔非相干相关全息术(Fresnel incoherent correlation holography, FINCH)通过空间光调制器(spatial light modulator, SLM)将来自物点的光波分解为曲率半径不同的两束自相干光, 干涉条纹由CCD记录. 由于受限于SLM与CCD的像素数目及像素尺寸, FINCH技术与光学全息术相比记录视场要小得多. 本文通过对FINCH系统的记录过程进行理论分析, 给出了SLM所能记录的视场角, 说明通过调控加载在SLM上的双透镜光轴中心, 能够扩大SLM的有效直径从而将SLM的有效记录范围增大2.77倍, 有效扩大了系统的记录视场. 搭建了非相干光反射式数字全息记录系统并对理论分析进行了实验验证, 结果表明: 在SLM上依次加载不同光轴中心位置的双透镜掩模进行FINCH记录及再现, 将得到的各子图像拼接融合可以得到高分辨率大视场图像, 为菲涅尔非相干全息术在高分辨大视场显微成像的进一步应用提供了有力支撑.
    Incoherent digital holography (IDH) is a recently proposed technique to record three-dimensional (3D) information about the object under incoherent illumination, which breaks the limitation that the holographic recording must be illuminated by coherent light sources and thus makes it usable in white-light and fluorescence illuminating circumstance. In particular, the fresnel incoherent correlation holography (FINCH) is an exemplary method which improves the imaging resolution power and efficiency of incoherent digital holography, and it can obtain 3D distribution of objects swiftly without scanning and moving. However, compared with the conventional optical holography, the FINCH system has a very small field-of-view due to the limitation of the pixel number and size of spatial light modulator (SLM). Therefore, expanding the recording field-of-view of FINCH system is very significant for the application of IDH. In the FINCH, the SLM is used as a diffractive beam splitter so that each spherical beam, originating from each object point, is split into two spherical beams with two different curve radii. Then the interference fringes between the two beams are recorded by CCD. In this paper, the field-of-view angle recorded by the SLM is proposed and analyzed based on the physical and numerical principles of the FINCH system. The field-of-view of imaging system is improved by increasing the effective diameter of SLM through moving the center of the dual-lens optical axis mounted on the SLM to the edge in different directions respectively. An optical setup of reflection mode is constructed to verify the theoretical analysis of this study, and the sub-holograms in different field-of-views are obtained by CCD through changing the masks displayed on the SLM sequentially. Then, the complex holograms in different field-of-views are obtained by using the three-step phase-shifting method, and the reconstructed images are acquired respectively through the angular spectrum method (ASM) by using a computer. Finally, the large field-of-view image is obtained by stitching the reconstructed images in each field-of-view by utilizing the matlab program. The experimental results show that the efficient recording field-of-view of SLM can be increased by 2.77 times with our proposed method. Accordingly, the recording field-of-view of the system is improved significantly. The recording field-of-view of the FINCH system will increase further if the center of the dual-lens optical axis continues to move toward the edge. Therefore, this study provides an important support for the further application of high resolution microscopic imaging with large field-of-view.
      通信作者: 弓巧侠, gqx1205@zzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51175479, U1704155)、 河南省高等学校重点科研项目(批准号: 16A140035, 18A140032)和河南省高校科技创新团队(批准号: 18IRTSTHN016)资助的课题.
      Corresponding author: Gong Qiao-Xia, gqx1205@zzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51175479, U1704155), the Key Scientific Research Projects of the Higher Education Institutions of Henan Province, China (Grant Nos. 16A140035, 18A140032), and the Science and Technology Innovation Team in Colleges and Universities of Henan Province, China (Grant No. 18IRTSTHN016).
    [1]

    Gabor D 1948 Nature 161 777Google Scholar

    [2]

    Dubois F, Joannes L, Legros J C 1999 Appl. Opt. 38 7085Google Scholar

    [3]

    Pedrini G, Tiziani H J 2002 Appl. Opt. 41 4489Google Scholar

    [4]

    Lingfeng Yu, Myung K, Kim 2005 Opt. Lett. 30 2092Google Scholar

    [5]

    Brooker G, Rosen J 2007 Opt. Lett. 32 912Google Scholar

    [6]

    Kim, Myung K 2012 Opt. Lett. 37 2694Google Scholar

    [7]

    Xu T X, He J R, Ren H, Zhao Z C, Ma G Q, Gong Q X , Yang S N, Dong L , Ma F Y 2017 Opt. Express 25 29207Google Scholar

    [8]

    Man T L, Wan Y H, Chen H, Jiang Z Q, Jiang Z Q 2012 Opt. Eng. 8556 855613Google Scholar

    [9]

    白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠 2018 物理学报 67 064202Google Scholar

    Bai Y H, Zang R H, Wang P, Ma F Y, Du Y L, Duan Z Y, Gong Q X 2018 Acta Phys. Sin. 67 064202Google Scholar

    [10]

    Kashter Y, Vijayakumar A, Miyamoto Y, Rosen J 2016 Opt. Lett. 41 1588Google Scholar

    [11]

    Liu Y C, Lu X X, Tao T, Zhang D S, Deng J, Wang H K, Zhang Z, Zhong L Y 2013 Asia Communications and Photon Conference Guangzhou, China, November 7-10, 2013 p14

    [12]

    赵忠超, 杨旭锋, 许天旭, 何九如, 弓巧侠, 杜艳丽, 董林, 袁斌, 马凤英 2018 物理学报 67 014203Google Scholar

    Zhao Z C, Yang X F, Xu T X, He J R, Gong Q X, Du Y L, Dong L, Yuan B, Ma F Y 2018 Acta Phys. Sin. 67 014203Google Scholar

    [13]

    Brooker G, Siegel N, Wang V, Rosen J 2011 Opt. Express 19 5047Google Scholar

    [14]

    Katz B, Rosen J, Kelner R, Brooker G 2012 Opt. Express 20 9109Google Scholar

    [15]

    Rosen J, Siegel N, Brooker G 2011 Opt. Express 19 26249Google Scholar

    [16]

    Siegel N, Storrie B, Bruce M, Brooker G 2015 Opt. Eng. 9336 1Google Scholar

    [17]

    Yanagawa T, Abe R, Hayasaki Y 2015 Opt. Lett. 40 3312Google Scholar

    [18]

    Kashter Y, Rosen J 2014 Opt. Express 22 20551Google Scholar

    [19]

    Bang L T, Wu H Y, Zhao Y, Kim E G, Kim N 2016 J. Microsc. 265 372Google Scholar

    [20]

    吴永丽, 杨勇, 翟宏琛, 马忠洪, 盖琦, 邓丽军 2013 物理学报 62 084203Google Scholar

    Wu Y L, Yang Y, Zhai H C, Ma Z H, Gai Q, Deng L J 2013 Acta Phys. Sin. 62 084203Google Scholar

    [21]

    Kim S, Im Y, Hahn J 2014 Opt. Eng. 9006 900613Google Scholar

    [22]

    Tahara T, Takahashi Y, Komura T, Kaku T, Arai Y 2015 J. Disp. Technol. 11 807

  • 图 1  FINCH系统成像原理图

    Fig. 1.  Schematic diagram of FINCH imaging system

    图 2  FINCH大视场成像原理图 (a) SLM记录视场角; (b)四次记录光轴中心位置; (c)九次记录光轴中心位置; (d)光轴中心处于图(b)中O点时的掩模; (e)光轴中心处于图(b)中B点时的掩模; (f)光轴中心处于图(c)中C点时的掩模

    Fig. 2.  Schematic diagrams of FINCH with large field-of-view imaging: (a) The recording field-of-view angle of SLM; (b) the central position of the optical axis for recording four times; (c) central position of optical axis for recording nine times; (d) optical axis center is at point O of (b); (e) optical axis center is at point B of (b); (f) optical axis center is at point C of (c).

    图 3  双透镜光轴中心处于四个不同位置的掩模

    Fig. 3.  The masks with the center of dual-lens optical axis in four different positions

    图 4  非相干光反射式数字全息实验光路

    Fig. 4.  Experimental set-up of incoherent light reflection digital holography

    图 5  USAF1951分辨率板重建像 (a)−(d)分别为加载图3中掩模所得; (e)常规再现像; (f)大视场图像; (g)为(b)红线处的强度分布曲线图; (h)为(e)红线处的强度分布曲线

    Fig. 5.  Reconstruction images of USAF1951 resolution plate: (a)−(d) are mounted with Fig. 3 (d) masks, respectively; (e) normal reconstruction images; (f) large field-of-view images; (g) the intensity distribution at the position of the red line of (b); (h) the intensity distribution at the position of the red line of (e)

    图 6  R1L3S5P分辨率板重建像 (a)常规掩模; (b)常规再现像; (c)四次记录掩模; (d)由四个子图像拼接得到的大视场图像; (e)九次记录掩模; (f)由九个子图像拼接得到的大视场图像

    Fig. 6.  Reconstruction images of R1L3S5P resolution plate: (a) Conventional mask; (b) conventional reconstruction image; (c) masks of four records; (d) large field-of-view images obtained by splicing four sub-images; (e) masks of nine records; (f) large field-of-view images obtained from nine sub-images

  • [1]

    Gabor D 1948 Nature 161 777Google Scholar

    [2]

    Dubois F, Joannes L, Legros J C 1999 Appl. Opt. 38 7085Google Scholar

    [3]

    Pedrini G, Tiziani H J 2002 Appl. Opt. 41 4489Google Scholar

    [4]

    Lingfeng Yu, Myung K, Kim 2005 Opt. Lett. 30 2092Google Scholar

    [5]

    Brooker G, Rosen J 2007 Opt. Lett. 32 912Google Scholar

    [6]

    Kim, Myung K 2012 Opt. Lett. 37 2694Google Scholar

    [7]

    Xu T X, He J R, Ren H, Zhao Z C, Ma G Q, Gong Q X , Yang S N, Dong L , Ma F Y 2017 Opt. Express 25 29207Google Scholar

    [8]

    Man T L, Wan Y H, Chen H, Jiang Z Q, Jiang Z Q 2012 Opt. Eng. 8556 855613Google Scholar

    [9]

    白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠 2018 物理学报 67 064202Google Scholar

    Bai Y H, Zang R H, Wang P, Ma F Y, Du Y L, Duan Z Y, Gong Q X 2018 Acta Phys. Sin. 67 064202Google Scholar

    [10]

    Kashter Y, Vijayakumar A, Miyamoto Y, Rosen J 2016 Opt. Lett. 41 1588Google Scholar

    [11]

    Liu Y C, Lu X X, Tao T, Zhang D S, Deng J, Wang H K, Zhang Z, Zhong L Y 2013 Asia Communications and Photon Conference Guangzhou, China, November 7-10, 2013 p14

    [12]

    赵忠超, 杨旭锋, 许天旭, 何九如, 弓巧侠, 杜艳丽, 董林, 袁斌, 马凤英 2018 物理学报 67 014203Google Scholar

    Zhao Z C, Yang X F, Xu T X, He J R, Gong Q X, Du Y L, Dong L, Yuan B, Ma F Y 2018 Acta Phys. Sin. 67 014203Google Scholar

    [13]

    Brooker G, Siegel N, Wang V, Rosen J 2011 Opt. Express 19 5047Google Scholar

    [14]

    Katz B, Rosen J, Kelner R, Brooker G 2012 Opt. Express 20 9109Google Scholar

    [15]

    Rosen J, Siegel N, Brooker G 2011 Opt. Express 19 26249Google Scholar

    [16]

    Siegel N, Storrie B, Bruce M, Brooker G 2015 Opt. Eng. 9336 1Google Scholar

    [17]

    Yanagawa T, Abe R, Hayasaki Y 2015 Opt. Lett. 40 3312Google Scholar

    [18]

    Kashter Y, Rosen J 2014 Opt. Express 22 20551Google Scholar

    [19]

    Bang L T, Wu H Y, Zhao Y, Kim E G, Kim N 2016 J. Microsc. 265 372Google Scholar

    [20]

    吴永丽, 杨勇, 翟宏琛, 马忠洪, 盖琦, 邓丽军 2013 物理学报 62 084203Google Scholar

    Wu Y L, Yang Y, Zhai H C, Ma Z H, Gai Q, Deng L J 2013 Acta Phys. Sin. 62 084203Google Scholar

    [21]

    Kim S, Im Y, Hahn J 2014 Opt. Eng. 9006 900613Google Scholar

    [22]

    Tahara T, Takahashi Y, Komura T, Kaku T, Arai Y 2015 J. Disp. Technol. 11 807

  • [1] 王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖. 基于空间光调制器构建二维任意形状的87Rb原子阵列. 物理学报, 2023, 72(6): 064201. doi: 10.7498/aps.72.20222096
    [2] 喻欢欢, 张晨爽, 林丹樱, 于斌, 屈军乐. 基于高速相位型空间光调制器的双光子多焦点结构光显微技术. 物理学报, 2021, 70(9): 098701. doi: 10.7498/aps.70.20201797
    [3] 齐淑霞, 刘圣, 李鹏, 韩磊, 程华超, 吴东京, 赵建林. 高效产生任意矢量光场的一种方法. 物理学报, 2019, 68(2): 024201. doi: 10.7498/aps.68.20181816
    [4] 白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠. 基于空间光调制器的非相干数字全息单次曝光研究. 物理学报, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [5] 钱鸿鹄, 孟炳寰, 袁银麟, 洪津, 张苗苗, 李双, 裘桢炜. 星载多角度偏振成像仪非偏通道全视场偏振效应测量及误差分析. 物理学报, 2017, 66(10): 100701. doi: 10.7498/aps.66.100701
    [6] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信. 物理学报, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [7] 杜杨, 刘鑫, 雷耀虎, 黄建衡, 赵志刚, 林丹樱, 郭金川, 李冀, 牛憨笨. X射线光栅微分相衬成像视场分析. 物理学报, 2016, 65(5): 058701. doi: 10.7498/aps.65.058701
    [8] 夏军, 常琛亮, 雷威. 基于液晶空间光调制器的全息显示. 物理学报, 2015, 64(12): 124213. doi: 10.7498/aps.64.124213
    [9] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于光学全息的任意矢量光的生成方法. 物理学报, 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [10] 黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云. 多环涡旋光束的实验研究. 物理学报, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [11] 赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升. 自加速类贝塞尔-厄米-高斯光束的理论和实验研究. 物理学报, 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [12] 周巧巧, 徐淑武, 陆俊发, 周琦, 纪宪明, 印建平. 液晶空间光调制器产生可调三光学势阱. 物理学报, 2013, 62(15): 153701. doi: 10.7498/aps.62.153701
    [13] 祝宝辉, 张淳民, 简小华, 曾文锋. 时空混合调制型偏振干涉成像光谱仪的全视场偏振信息探测研究. 物理学报, 2012, 61(9): 090701. doi: 10.7498/aps.61.090701
    [14] 辛璟焘, 高春清, 李辰, 王铮. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量. 物理学报, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [15] 顾宋博, 徐淑武, 陆俊发, 纪宪明, 印建平. 用液晶空间光调制器产生光阱阵列. 物理学报, 2012, 61(15): 153701. doi: 10.7498/aps.61.153701
    [16] 徐淑武, 周巧巧, 顾宋博, 纪宪明, 印建平. 用空间光调制器产生三维光阱阵列. 物理学报, 2012, 61(22): 223702. doi: 10.7498/aps.61.223702
    [17] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [18] 郑华东, 于瀛洁, 代林茂, 王涛. 彩色全息显示中液晶空间光调制器位相调制偏差的矫正方法. 物理学报, 2010, 59(9): 6145-6151. doi: 10.7498/aps.59.6145
    [19] 步志超, 张淳民, 赵葆常, 朱化春. 大视场消色差温度补偿型风成像干涉仪调制度的分析与计算. 物理学报, 2009, 58(4): 2415-2422. doi: 10.7498/aps.58.2415
    [20] 葛爱明, 隋 展, 徐克璹. 反射型LCOS器件纯相位调制特性的研究. 物理学报, 2003, 52(10): 2481-2485. doi: 10.7498/aps.52.2481
计量
  • 文章访问数:  7899
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-17
  • 修回日期:  2019-02-19
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回