搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高速相位型空间光调制器的双光子多焦点结构光显微技术

喻欢欢 张晨爽 林丹樱 于斌 屈军乐

引用本文:
Citation:

基于高速相位型空间光调制器的双光子多焦点结构光显微技术

喻欢欢, 张晨爽, 林丹樱, 于斌, 屈军乐

Two-photon multifocal structured light microscopy based on high-speed phase-type spatial light modulator

Yu Huan-Huan, Zhang Chen-Shuang, Lin Dan-Ying, Yu Bin, Qu Jun-Le
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 多焦点结构光照明显微镜(multifocal structured illumination microscopy, MSIM)能在50 μm的成像深度内实现2倍于衍射极限分辨率的提升, 但在对厚样品成像时, 散射光和离焦光限制了其层析能力和图像衬度. 双光子多焦点结构光照明显微镜(two-photon MSIM, 2P-MSIM)克服了样品组织散射的影响, 进一步提高了MSIM的成像深度和成像特性. 然而, 现有的2P-MSIM通常采用振镜扫描成像, 系统复杂, 灵活性差. 为了解决上述问题, 本文提出了一种基于高速相位型空间光调制器(spatial light modulator, SLM)的双光子多焦点结构光照明超分辨显微成像系统, 通过在SLM上同时加载生成多焦点阵列的相位图和线性相位光栅的相位图, 实现了多焦点阵列的产生和在样品面上的高精度的并行数字随机寻址扫描和激发成像, 结合像素重定位和反卷积技术实现了三维双光子多焦点结构光超分辨成像, 解决了扫描振镜在2P-MSIM成像中的机械惯性问题, 同时降低了系统的复杂性, 提升了灵活性. 在此基础上, 利用搭建的2P-MSIM开展了小鼠肾组织切片和铃兰根茎双光子超分辨成像实验, 验证了该方法的三维超分辨成像能力, 对于2P-MSIM的发展具有重要的意义.
    Multifocal structured illumination microscopy (MSIM) can achieve a doubled improvement in the resolution of the diffraction limit within an imaging depth of 50 μm. But when imaging thick samples, scattered light and defocused light limit its optical sectioning capability and image contrast. Two-photon MSIM (2P-MSIM) overcomes the influence of sample tissue scattering and further improves the imaging depth and imaging characteristics. However, the existing 2P-MSIM usually adopts galvanometer based scanning mirrors for precisely scanning imaging, which is a complicated and poor flexibility system. Here we propose a simpler 2P-MSIM. Two-photon multifocal scanning imaging can be realized by a spatial light modulator (SLM) with a high frame rate (< 845 Hz). The phase map of generating multi-focus array and linear phase grating loaded on the SLM simultaneously, high-precision parallel digital random address scanning and excitation imaging on the sample surface can be realized. The mechanical inertia problem of the galvanometer scanner in multifocal imaging can be solved by the proposed method while reducing the complexity of the system and improving flexibility. We finally realize two-photon multifocal imaging of mouse kidney tissue slices and lily of the valley rhizome by this system, which verifies the three-dimensional super-resolution imaging capability of this method. It is of great significance in developing the 2P-MSIM.
      通信作者: 于斌, yubin@szu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61975131, 61775144, 61835009)、广东省自然科学基金(批准号: 2018A030313362)、广东省高等学校科技创新(重点)项目(批准号: 2016KCXTD007)和深圳市基础研究项目(批准号: JCYJ20170818141701667, JCYJ20170818144012025, JCYJ20170412105003520, JCYJ20180305125649693)资助的课题
      Corresponding author: Yu Bin, yubin@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975131, 61775144, 61835009), the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A030313362), the Scientific and Technological Innovation (Key) Projects of Department of Education of Guangdong Province, China (Grant No. 2016KCXTD007), and the Shenzhen Basic Research Project, China (Grant Nos. JCYJ20170818141701667, JCYJ20170818144012025, JCYJ20170412105003520, JCYJ20180305125649693)
    [1]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [2]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [3]

    Rust M J, Bates M, Zhuang X W 2006 Nat. Methods 3 793Google Scholar

    [4]

    Gustafsson M G L 2000 J. Microsc. 198 82Google Scholar

    [5]

    Muller C B, Enderlein J 2010 Phys. Rev. Lett. 104Google Scholar

    [6]

    York A G, Parekh S H, Nogare D D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749Google Scholar

    [7]

    Nielsen T, Frick M, Hellweg D, Andresen P 2001 J. Microsc-Oxford 201 368Google Scholar

    [8]

    Bewersdorf J, Pick R, Hell S W 1998 Opt. Lett. 23 655Google Scholar

    [9]

    Qu J L, Liu L X, Chen D N, Lin Z Y, Xu G X, Guo B P, Niu H B 2006 Opt. Lett. 31 368Google Scholar

    [10]

    Ingaramo M, York A G, Wawrzusin P, Milberg O, Hong A, Weigert R, Shroff H, Patterson G H 2014 Proc. Natl. Acad. Sci. U.S.A. 111 5254Google Scholar

    [11]

    Sacconi L, Froner E, Antolini R, Taghizadeh M R, Choudhury A, Pavone F S 2003 Opt. Lett. 28 1918Google Scholar

    [12]

    Jureller J E, Kim H Y, Scherer N F 2006 Opt. Express 14 3406Google Scholar

    [13]

    Shao Y, Qin W, Liu H, Qu J, Peng X, Niu H, Gao B Z 2012 Appl. Phys. B 107 653Google Scholar

    [14]

    Matsumoto N, Okazaki S, Fukushi Y, Takamoto H, Inoue T, Terakawa S 2014 Opt. Express 22 633Google Scholar

    [15]

    Matsumoto N, Konno A, Ohbayashi Y, Inoue T, Matsumoto A, Uchimura K, Kadomatsu K, Okazaki S 2017 Opt. Express 25 7055Google Scholar

    [16]

    Sinclair G, Leach J, Jordan P, Gibson G, Yao E, Laczik Z J, Padgett M J, Courtial J 2004 Opt. Express 12 1665Google Scholar

    [17]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar

    [18]

    Meister M, Winfield R J 2002 Opt. Commun. 203 39Google Scholar

    [19]

    Di Leonardo R, Ianni F, Ruocco G 2007 Opt. Express 15 1913Google Scholar

    [20]

    Kim D, Keesling A, Omran A, Levine H, Bernien H, Greiner M, Lukin M D, Englund D R 2019 Opt. Lett. 44 3178Google Scholar

    [21]

    Sheppard C J R, Gu M 1990 Opitk 86 104Google Scholar

    [22]

    Roider C, Heintzmann R, Piestun R, Jesacher A 2016 Opt. Express 24 15456Google Scholar

    [23]

    Schmitz C H J, Spatz J P, Curtis J E 2005 Opt. Express 13 8678Google Scholar

    [24]

    Li S W, Wu J J, Li H, Lin D Y, Yu B, Qu J L 2018 Opt. Express 26 23585Google Scholar

  • 图 1  2P-MSIM系统光路示意图

    Fig. 1.  Schematic diagram of 2P-MSIM system.

    图 2  (a) WGS算法流程图; (b)得到的相位图; (c)生成的点阵图

    Fig. 2.  (a) Flow chart of WGS algorithm; (b) generated phase map; (c) generated multi-focus array.

    图 3  100 nm荧光珠成像 (a) PinholedWF图像; (b) MPSS图像; (c) MSIM图像; (d)图(a)—(c)中黄色实线所在像素值的大小与对应像素所占宽度的拟合曲线; (e)单个荧光珠的高斯拟合曲线

    Fig. 3.  100 nm fluorescent bead imaging: (a) PinholedWF image; (b) MPSS image; (c) MSIM image; (d) fitting curves of the size of the pixel value of the yellow solid lines in panel (a)-(c) vs. the width of corresponding pixel; (e) Gaussian fitting curves of a single fluorescent bead.

    图 4  小鼠肾切片的不同厚度层成像图

    Fig. 4.  Images of different thickness layers of mouse kidney section.

    图 5  小鼠肾切片三维成像图 (a) PinholedWF图像; (b) MSIM图像

    Fig. 5.  Three-dimensional image of mouse kidney section: (a) PinholedWF image; (b) MSIM image.

    图 6  铃兰根茎不同厚度层成像图

    Fig. 6.  Images of different thickness layers of lily of the valley rhizome.

  • [1]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [2]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [3]

    Rust M J, Bates M, Zhuang X W 2006 Nat. Methods 3 793Google Scholar

    [4]

    Gustafsson M G L 2000 J. Microsc. 198 82Google Scholar

    [5]

    Muller C B, Enderlein J 2010 Phys. Rev. Lett. 104Google Scholar

    [6]

    York A G, Parekh S H, Nogare D D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749Google Scholar

    [7]

    Nielsen T, Frick M, Hellweg D, Andresen P 2001 J. Microsc-Oxford 201 368Google Scholar

    [8]

    Bewersdorf J, Pick R, Hell S W 1998 Opt. Lett. 23 655Google Scholar

    [9]

    Qu J L, Liu L X, Chen D N, Lin Z Y, Xu G X, Guo B P, Niu H B 2006 Opt. Lett. 31 368Google Scholar

    [10]

    Ingaramo M, York A G, Wawrzusin P, Milberg O, Hong A, Weigert R, Shroff H, Patterson G H 2014 Proc. Natl. Acad. Sci. U.S.A. 111 5254Google Scholar

    [11]

    Sacconi L, Froner E, Antolini R, Taghizadeh M R, Choudhury A, Pavone F S 2003 Opt. Lett. 28 1918Google Scholar

    [12]

    Jureller J E, Kim H Y, Scherer N F 2006 Opt. Express 14 3406Google Scholar

    [13]

    Shao Y, Qin W, Liu H, Qu J, Peng X, Niu H, Gao B Z 2012 Appl. Phys. B 107 653Google Scholar

    [14]

    Matsumoto N, Okazaki S, Fukushi Y, Takamoto H, Inoue T, Terakawa S 2014 Opt. Express 22 633Google Scholar

    [15]

    Matsumoto N, Konno A, Ohbayashi Y, Inoue T, Matsumoto A, Uchimura K, Kadomatsu K, Okazaki S 2017 Opt. Express 25 7055Google Scholar

    [16]

    Sinclair G, Leach J, Jordan P, Gibson G, Yao E, Laczik Z J, Padgett M J, Courtial J 2004 Opt. Express 12 1665Google Scholar

    [17]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar

    [18]

    Meister M, Winfield R J 2002 Opt. Commun. 203 39Google Scholar

    [19]

    Di Leonardo R, Ianni F, Ruocco G 2007 Opt. Express 15 1913Google Scholar

    [20]

    Kim D, Keesling A, Omran A, Levine H, Bernien H, Greiner M, Lukin M D, Englund D R 2019 Opt. Lett. 44 3178Google Scholar

    [21]

    Sheppard C J R, Gu M 1990 Opitk 86 104Google Scholar

    [22]

    Roider C, Heintzmann R, Piestun R, Jesacher A 2016 Opt. Express 24 15456Google Scholar

    [23]

    Schmitz C H J, Spatz J P, Curtis J E 2005 Opt. Express 13 8678Google Scholar

    [24]

    Li S W, Wu J J, Li H, Lin D Y, Yu B, Qu J L 2018 Opt. Express 26 23585Google Scholar

  • [1] 王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖. 基于空间光调制器构建二维任意形状的87Rb原子阵列. 物理学报, 2023, 72(6): 064201. doi: 10.7498/aps.72.20222096
    [2] 潘彬雄, 弓晟, 张鹏, 刘子叶, 皮彭健, 陈旺, 黄文强, 王保举, 詹求强. 基于点扫描的高时空分辨荧光显微成像技术进展. 物理学报, 2023, 72(20): 204201. doi: 10.7498/aps.72.20230912
    [3] 葛阳阳, 何灼奋, 黄黎琳, 林丹樱, 曹慧群, 屈军乐, 于斌. 平场复用多焦点结构光照明超分辨显微成像. 物理学报, 2022, 71(4): 048704. doi: 10.7498/aps.71.20211712
    [4] 葛阳阳, 于斌. 平场复用多焦点结构光照明超分辨显微成像研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211712
    [5] 汤明玉, 武梦婷, 臧瑞环, 荣腾达, 杜艳丽, 马凤英, 段智勇, 弓巧侠. 菲涅耳非相干数字全息大视场研究. 物理学报, 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [6] 齐淑霞, 刘圣, 李鹏, 韩磊, 程华超, 吴东京, 赵建林. 高效产生任意矢量光场的一种方法. 物理学报, 2019, 68(2): 024201. doi: 10.7498/aps.68.20181816
    [7] 白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠. 基于空间光调制器的非相干数字全息单次曝光研究. 物理学报, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [8] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信. 物理学报, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [9] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于光学全息的任意矢量光的生成方法. 物理学报, 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [10] 孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖. 试验优化设计Er3+/Yb3+共掺BaGd2ZnO5荧光粉及其上转换发光性质. 物理学报, 2015, 64(24): 243301. doi: 10.7498/aps.64.243301
    [11] 黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云. 多环涡旋光束的实验研究. 物理学报, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [12] 周巧巧, 徐淑武, 陆俊发, 周琦, 纪宪明, 印建平. 液晶空间光调制器产生可调三光学势阱. 物理学报, 2013, 62(15): 153701. doi: 10.7498/aps.62.153701
    [13] 文侨, 王凯歌, 邵永红, 屈军乐, 牛憨笨. 基于偏振滤波图像增强和动态散斑照明的宽场荧光层析显微镜. 物理学报, 2013, 62(3): 034203. doi: 10.7498/aps.62.034203
    [14] 辛璟焘, 高春清, 李辰, 王铮. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量. 物理学报, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [15] 顾宋博, 徐淑武, 陆俊发, 纪宪明, 印建平. 用液晶空间光调制器产生光阱阵列. 物理学报, 2012, 61(15): 153701. doi: 10.7498/aps.61.153701
    [16] 徐淑武, 周巧巧, 顾宋博, 纪宪明, 印建平. 用空间光调制器产生三维光阱阵列. 物理学报, 2012, 61(22): 223702. doi: 10.7498/aps.61.223702
    [17] 张金芳, 谭 磊, 刘利伟, 丁彩英. 运动级联型三能级原子双光子过程的熵演化. 物理学报, 2008, 57(4): 2205-2211. doi: 10.7498/aps.57.2205
    [18] 甘琛利, 张彦鹏, 余孝军, 聂志强, 李 岭, 宋建平, 葛 浩, 姜 彤, 张相臣, 卢克清. 基于双光子不对称色锁二阶随机关联的阿秒极化拍研究. 物理学报, 2007, 56(5): 2670-2677. doi: 10.7498/aps.56.2670
    [19] 林子扬, 付 哲, 刘立新, 胡 涛, 屈军乐, 郭宝平, 牛憨笨. 双光子阵列点激发同时多维荧光信息的处理. 物理学报, 2006, 55(12): 6701-6707. doi: 10.7498/aps.55.6701
    [20] 葛爱明, 隋 展, 徐克璹. 反射型LCOS器件纯相位调制特性的研究. 物理学报, 2003, 52(10): 2481-2485. doi: 10.7498/aps.52.2481
计量
  • 文章访问数:  8741
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-29
  • 修回日期:  2020-11-24
  • 上网日期:  2021-04-20
  • 刊出日期:  2021-05-05

/

返回文章
返回