搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光谱法的发光二极管稳态热阻测量方法

蒋福春 刘瑞友 彭冬生 刘文 柴广跃 李百奎 武红磊

引用本文:
Citation:

基于光谱法的发光二极管稳态热阻测量方法

蒋福春, 刘瑞友, 彭冬生, 刘文, 柴广跃, 李百奎, 武红磊

Steady-state thermal resistance measurement of light-emitting diodes based on spectroscopic method

Jiang Fu-Chun, Liu Rui-You, Peng Dong-Sheng, Liu Wen, Chai Guang-Yue, Li Bai-Kui, Wu Hong-Lei
PDF
HTML
导出引用
  • 根据白光发光二极管(LED)发光光谱特点, 通过分析蓝光光谱和由蓝光激发黄色荧光粉产生的黄光光谱的交点(即整个光谱的波谷点)特性, 利用常规可见光光谱仪设计了一套基于光谱法的LED稳态热阻测量系统, 采用正常的驱动电流通过一定的函数算法进行拟合, 得到整体光谱波谷处归一化光谱强度与结温间敏感系数K和定标函数, 再根据温升曲线可计算出任意工作状态下LED结温相对于基底的温升, 并结合LED的热耗散功率从而得到LED的稳态热阻. 本方法避免了类似正向压降法采用极小电流定标而需要高速数据采集模块和高速取样转换等模块导致的设备昂贵的缺点, 从而降低了成本. 最后采用本文设计的系统和美国Mentor Graphics公司的T3Ster仪器分别对多种LED进行测量并对结果进行了比较, 发现稳态热阻最大偏离度仅为3.64%. 表明本文设计的系统和方法在不需要昂贵设备的情况下便可以达到与Mentor Graphics公司的T3Ster仪器相仿的精度. 本方法采用非传统式光谱法测量, 具有可远程实时在线检测LED结温和低成本的特点, 对LED封装结构没有任何限制, 因此比Mentor Graphics公司T3Ster设备采用的电压法有更广的应用范围, 具有一定的实用价值.
    According to the luminous spectrum characteristics of white light emission diode (WLED) light emission spectrum, through the analysis of the intersection (the trough point of the whole spectrum) of blue light spectrum and yellow light spectrum generated by blue light excited yellow phosphor, in this paper we design an LED steady-state thermal resistance measurement system based on the spectroscopic method by using the conventional spectrometer, and we also use the normal driving current to fit the whole spectrum trough through a certain function algorithm. According to the temperature rise curve, we can calculate the temperature rise of the LED junction temperature relative to the substrate under any working condition, and combine the heat dissipation power of the LED to get the steady-state thermal resistance of the LED. This method avoids the limitation of a similar forward voltage drop method which uses the minimum current calibration and requires the modules of high-speed data acquisition and high-speed sampling conversion, thus making the equipment expensive. Therefore it is necessary to reduce its cost. Finally, the system designed in this paper and the T3Ster instrument of Mentor Graphics Corporation in the United States are both used to measure various LEDs and their results are compared with each other. The results show that the maximum deviation of steady-state thermal resistance is only 3.64%. It indicates that the system and method designed in this paper can achieve the same precision as T3Ster instrument of Mentor Graphics Corporation, demonstrating that the system and method designed in this paper can achieve the same precision as the T3Ster instrument of Mentor Graphics, under the condition without needing expensive equipment, Moreover, this method uses non-traditional spectral method to measure the junction temperature of LED, which has the characteristics of remote real-time online detection of LED junction temperature, low cost, and no restrictions on the LED packaging structure. Therefore, this method has a wider application range than the voltage method adopted by Mentor Graphics T3Ster equipment, and has a certain practical value.
      通信作者: 武红磊, hlwu@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61974094)、广东省重点领域重大研发计划(批准号: 2020B010169003)和深圳市科技计划重点项目(批准号: JCYJ20200109105413475)资助的课题
      Corresponding author: Wu Hong-Lei, hlwu@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61974094), the Key R & D Program of Guangdong Province, China (Grant No. 2020B010169003), and the Science and Technology Innovation Commission of Shenzhen, China (Grant No. JCYJ20200109105413475)
    [1]

    陈依新, 沈光地, 高志远, 郭伟玲, 张光沉, 韩军, 朱彦旭 2011 物理学报 60 087206Google Scholar

    Chen Y X, Shen G D, Gao Z Y, Guo W L, Zhang G C, Han J, Zhu Y X 2011 Acta Phys. Sin. 60 087206Google Scholar

    [2]

    郭春生, 张燕峰, 万宁, 李睿, 朱慧, 冯士维 2013 物理学报 62 218503Google Scholar

    Guo C S, Zhang Y F, Wan N, Li R, Zhu H, Feng S W 2013 Acta Phys. Sin. 62 218503Google Scholar

    [3]

    赵华龙, 梁志毅, 石兴春, 杨小君 2007 光子学报 36 244

    Zhao H L, Liang Z Y, Shi X C, Yang X J 2007 Acta Photon. Sin. 36 244

    [4]

    杨新, 郭伟玲, 王嘉露, 邓杰, 邰建鹏, 孙捷 2020 光谱学与光谱分析 40 368Google Scholar

    Yang X, GuoW L, Wang J L, Deng J, Tai J P, Sun J 2020 Spectroscopy and Spectral Analysis 40 368Google Scholar

    [5]

    王健, 黄先, 刘丽, 吴庆, 褚明辉, 张立功, 侯凤勤, 刘学彦, 赵成久, 范翊, 罗劲松, 蒋大鹏 2008 发光学报 29 358

    Wang J, Huang X, Liu L, Wu Q, Chu M H, Zhang L G, Hou F Q, Liu X Y, Zhao C J, Fang Y, Luo J S, Jiang D P 2008 Chin. J. Lumin. 29 358

    [6]

    余彬海, 王垚浩 2005 发光学报 26 761Google Scholar

    Yu B H, Wang Y H 2005 Chin. J. Lumin. 26 761Google Scholar

    [7]

    招瑜, 魏爱香, 刘俊 2015 物理学报 64 118501Google Scholar

    Zhao Y, Wei A X, Liu J 2015 Acta Phys. Sin. 64 118501Google Scholar

    [8]

    Chen K, Narendran N 2013 Microelectron. Reliabililty 53 701Google Scholar

    [9]

    程星福, 刘显明, 陈伟民, 赖伟 2014 光电子·激光 25 1949

    Cheng X F, Liu X M, Chen W M, Lai W 2014 J. Optoelectron. Laser 25 1949

    [10]

    Gu Y M, Narendran N 2004 Third International Conference on Solid State Lighting, Proceedings of SPIE 5187 San Diego, California, United States, January 26, 2004 p93

    [11]

    刘康, 孙华锐 2020 物理学报 69 028501Google Scholar

    Liu K, Sun H R 2020 Acta Phys. Sin. 69 028501Google Scholar

    [12]

    蒋福春, 何思宇, 刘远海, 刘文, 柴广跃, 赵志刚, 李百奎 2020 光子学报 49 0330003Google Scholar

    Jiang F C, He S Y, Liu Y H, Liu W, Chai G Y, Zhao Z G, Li B K 2020 Acta Photon. Sin. 49 0330003Google Scholar

    [13]

    Hong E, Narendran N 2004 Third International Conference on Solid State Lighting, Proceedings of SPIE 5187 San Diego, California, United States, January 26, 2004 p93

    [14]

    邱西振, 张方辉 2013 光谱学与光谱分析 33 36Google Scholar

    Qiu X Z, Zhang F H 2013 Spectroscopy and Spectral Analysis 33 36Google Scholar

    [15]

    陈贵锋, 谭小动, 万尾甜, 沈俊, 郝秋艳, 唐成春, 朱建军, 刘宗顺, 赵德刚, 张书明 2011 物理学报 60 076104Google Scholar

    Chen G F, Tian X D, Wan W T, Shen J, Hao Q Y, Tang C C, Zhu J J, Liu X S, Zhao D G, Zhang S M 2011 Acta Phys. Sin. 60 076104Google Scholar

    [16]

    饶丰, 方涛, 王紫凌, 陈晨 2020 光子学报 49 0912002Google Scholar

    Rao F, Fang T, Wang Z L, Chen C 2020 Acta Photon. Sin. 49 0912002Google Scholar

    [17]

    蒋福春, 何思宇, 刘远海, 刘文, 柴广跃, 李百奎, 彭冬生 2020 光谱学与光谱分析 40 2087Google Scholar

    Jiang F C, He S Y, Liu Y H, Liu W, Chai G Y, Li B K, Peng D S 2020 Spectroscopy and Spectral Analysis 40 2087Google Scholar

    [18]

    秦贤满 1996 半导体技术 3 32

    Qin X M 1996 Semiconductor Technology 3 32

    [19]

    赵晓霞, 王晓君, 陈宝玖, 孟庆, 裕颜斌, 狄卫华 2007 光谱学与光谱分析 27 629

    Zhao X X, Wang X J, Chen B J, Meng Q Y, Yan B, Di W H 2007 Spectroscopy and Spectral Analysis 27 629

    [20]

    殷录桥, 翁菲, 宋朋, 张金龙, 杨卫桥, 张建华 2014 光学学报 34 0323002Google Scholar

    Yin L Q, Weng F, Song P, Zhang J L, Yang W Q, Zhang J H 2014 Acta Opt. Sin. 34 0323002Google Scholar

  • 图 1  采用蓝光激发荧光粉产生白光的LED光谱图

    Fig. 1.  Spectrgoram of white LED with phosphor excited by blue light.

    图 2  基于光谱法的LED稳态热阻测量系统示意图

    Fig. 2.  Schematic diagram of LED steady-state thermal resistance measurement system based on spectrum method.

    图 3  高色温LED定标函数曲线图

    Fig. 3.  Calibration function curve of high color temperature LED.

    图 4  采用光谱法测得LED结温随时间变化曲线

    Fig. 4.  Curve of LED junction temperature with time measured by spectrum method.

    图 5  低色温归一化光谱相对强度分布

    Fig. 5.  Relative intensity distribution of low color temperature normalized spectrum.

    图 6  低色温LED定标函数曲线

    Fig. 6.  Calibration function curve of low color temperature LED.

    表 1  不同温度下高色温白光LED光谱波谷相对强度

    Table 1.  Relative strength of spectral trough of white LED with high color temperature at different temperatures.

    温度 ∆T/℃
    510152025303540455055606570758085
    波谷相对强度∆I/%9.9810.2410.6310.9911.3211.6412.0312.4412.7413.1013.5113.8714.2714.6614.9715.4415.82
    下载: 导出CSV

    表 2  相对于基准状态下, 不同温度下高色温白光LED光谱波谷相对强度

    Table 2.  Relative strength of spectral trough of white LED with high color temperature at different temperatures to reference state.

    温度差 T/℃
    –20–15–10–5051015202530354045505560
    波谷归一化强度差I/%–1.34–1.08–0.69–0.3300.320.711.121.421.782.192.552.953.343.654.124.50
    下载: 导出CSV

    表 3  不同温度下低色温白光LED光谱波谷相对强度

    Table 3.  Relative strength of spectral trough of white LED with high color temperature at different temperatures.

    温度差∆Tj/℃
    –20–15–10–50510152025303540
    波谷处归一化强度差∆I /%–1.20–0.83–0.54–0.1500.330.700.971.361.681.942.412.71
    下载: 导出CSV

    表 4  四种大功率白光LED稳态热阻测试结果

    Table 4.  Steady state thermal resistance test results of four kinds of high power white LED.

    LED种类高色温LED(A)高色温LED(B)低色温LED(C)低色温LED(D)
    热耗散功率/W0.9090.8910.8620.875
    稳定时结温/℃43.138.640.344.6
    基板温度/℃25.025.125.025.0
    本文方法所得稳态热阻/(℃·W–1)19.915.217.722.3
    采用T3Ster电压法测得稳态热阻/(℃·W–1)19.214.918.121.9
    偏离度/%3.642.01–2.211.83
    下载: 导出CSV
  • [1]

    陈依新, 沈光地, 高志远, 郭伟玲, 张光沉, 韩军, 朱彦旭 2011 物理学报 60 087206Google Scholar

    Chen Y X, Shen G D, Gao Z Y, Guo W L, Zhang G C, Han J, Zhu Y X 2011 Acta Phys. Sin. 60 087206Google Scholar

    [2]

    郭春生, 张燕峰, 万宁, 李睿, 朱慧, 冯士维 2013 物理学报 62 218503Google Scholar

    Guo C S, Zhang Y F, Wan N, Li R, Zhu H, Feng S W 2013 Acta Phys. Sin. 62 218503Google Scholar

    [3]

    赵华龙, 梁志毅, 石兴春, 杨小君 2007 光子学报 36 244

    Zhao H L, Liang Z Y, Shi X C, Yang X J 2007 Acta Photon. Sin. 36 244

    [4]

    杨新, 郭伟玲, 王嘉露, 邓杰, 邰建鹏, 孙捷 2020 光谱学与光谱分析 40 368Google Scholar

    Yang X, GuoW L, Wang J L, Deng J, Tai J P, Sun J 2020 Spectroscopy and Spectral Analysis 40 368Google Scholar

    [5]

    王健, 黄先, 刘丽, 吴庆, 褚明辉, 张立功, 侯凤勤, 刘学彦, 赵成久, 范翊, 罗劲松, 蒋大鹏 2008 发光学报 29 358

    Wang J, Huang X, Liu L, Wu Q, Chu M H, Zhang L G, Hou F Q, Liu X Y, Zhao C J, Fang Y, Luo J S, Jiang D P 2008 Chin. J. Lumin. 29 358

    [6]

    余彬海, 王垚浩 2005 发光学报 26 761Google Scholar

    Yu B H, Wang Y H 2005 Chin. J. Lumin. 26 761Google Scholar

    [7]

    招瑜, 魏爱香, 刘俊 2015 物理学报 64 118501Google Scholar

    Zhao Y, Wei A X, Liu J 2015 Acta Phys. Sin. 64 118501Google Scholar

    [8]

    Chen K, Narendran N 2013 Microelectron. Reliabililty 53 701Google Scholar

    [9]

    程星福, 刘显明, 陈伟民, 赖伟 2014 光电子·激光 25 1949

    Cheng X F, Liu X M, Chen W M, Lai W 2014 J. Optoelectron. Laser 25 1949

    [10]

    Gu Y M, Narendran N 2004 Third International Conference on Solid State Lighting, Proceedings of SPIE 5187 San Diego, California, United States, January 26, 2004 p93

    [11]

    刘康, 孙华锐 2020 物理学报 69 028501Google Scholar

    Liu K, Sun H R 2020 Acta Phys. Sin. 69 028501Google Scholar

    [12]

    蒋福春, 何思宇, 刘远海, 刘文, 柴广跃, 赵志刚, 李百奎 2020 光子学报 49 0330003Google Scholar

    Jiang F C, He S Y, Liu Y H, Liu W, Chai G Y, Zhao Z G, Li B K 2020 Acta Photon. Sin. 49 0330003Google Scholar

    [13]

    Hong E, Narendran N 2004 Third International Conference on Solid State Lighting, Proceedings of SPIE 5187 San Diego, California, United States, January 26, 2004 p93

    [14]

    邱西振, 张方辉 2013 光谱学与光谱分析 33 36Google Scholar

    Qiu X Z, Zhang F H 2013 Spectroscopy and Spectral Analysis 33 36Google Scholar

    [15]

    陈贵锋, 谭小动, 万尾甜, 沈俊, 郝秋艳, 唐成春, 朱建军, 刘宗顺, 赵德刚, 张书明 2011 物理学报 60 076104Google Scholar

    Chen G F, Tian X D, Wan W T, Shen J, Hao Q Y, Tang C C, Zhu J J, Liu X S, Zhao D G, Zhang S M 2011 Acta Phys. Sin. 60 076104Google Scholar

    [16]

    饶丰, 方涛, 王紫凌, 陈晨 2020 光子学报 49 0912002Google Scholar

    Rao F, Fang T, Wang Z L, Chen C 2020 Acta Photon. Sin. 49 0912002Google Scholar

    [17]

    蒋福春, 何思宇, 刘远海, 刘文, 柴广跃, 李百奎, 彭冬生 2020 光谱学与光谱分析 40 2087Google Scholar

    Jiang F C, He S Y, Liu Y H, Liu W, Chai G Y, Li B K, Peng D S 2020 Spectroscopy and Spectral Analysis 40 2087Google Scholar

    [18]

    秦贤满 1996 半导体技术 3 32

    Qin X M 1996 Semiconductor Technology 3 32

    [19]

    赵晓霞, 王晓君, 陈宝玖, 孟庆, 裕颜斌, 狄卫华 2007 光谱学与光谱分析 27 629

    Zhao X X, Wang X J, Chen B J, Meng Q Y, Yan B, Di W H 2007 Spectroscopy and Spectral Analysis 27 629

    [20]

    殷录桥, 翁菲, 宋朋, 张金龙, 杨卫桥, 张建华 2014 光学学报 34 0323002Google Scholar

    Yin L Q, Weng F, Song P, Zhang J L, Yang W Q, Zhang J H 2014 Acta Opt. Sin. 34 0323002Google Scholar

  • [1] 赵建铖, 吴朝兴, 郭太良. 无注入型发光二极管的载流子输运模型研究. 物理学报, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [3] 王苏杰, 李树强, 吴小明, 陈芳, 江风益. 热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响. 物理学报, 2020, 69(4): 048103. doi: 10.7498/aps.69.20191720
    [4] 王党会, 许天旱. 蓝紫光发光二极管中的低频产生-复合噪声行为研究. 物理学报, 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [5] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [6] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [7] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [8] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [9] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [10] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [11] 董雅娟, 张俊兵, 陈海涛, 曾祥华. 大功率全方位反射镜发光二极管性能研究. 物理学报, 2011, 60(7): 077803. doi: 10.7498/aps.60.077803
    [12] 薛正群, 黄生荣, 张保平, 陈朝. 激光诱导p-GaN掺杂对发光二极管性能改善的分析. 物理学报, 2010, 59(2): 1268-1274. doi: 10.7498/aps.59.1268
    [13] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能. 物理学报, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [14] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析. 物理学报, 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [15] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [16] 李炳乾, 刘玉华, 冯玉春. 大功率GaN基发光二极管等效串联电阻的功率耗散及其对发光效率的影响. 物理学报, 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
    [17] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [18] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响. 物理学报, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [19] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征. 物理学报, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  5285
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-09
  • 修回日期:  2021-03-03
  • 上网日期:  2021-04-15
  • 刊出日期:  2021-05-05

/

返回文章
返回