搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效绿光钙钛矿发光二极管研究进展

瞿子涵 储泽马 张兴旺 游经碧

引用本文:
Citation:

高效绿光钙钛矿发光二极管研究进展

瞿子涵, 储泽马, 张兴旺, 游经碧

Research progress of efficient green perovskite light emitting diodes

Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi
PDF
HTML
导出引用
  • 钙钛矿发光二极管具有发光效率高、色纯、发光波长在可见光区间连续可调等优点, 近来成为研究前沿热点. 作为人眼最为敏感的波段, 绿光发射的钙钛矿发光二极管对于白光照明和平板显示具有重要意义, 得到了科研人员的广泛关注. 本文主要介绍绿光钙钛矿发光二极管的发展历史、钙钛矿材料和发光二极管器件的基本结构以及提升绿光钙钛矿发光二极管效率的主要方法. 最后本文对未来绿光钙钛矿发光二极管可能的发展方向进行了简要的预测, 以期对未来该领域的研究提供一些思路.
    Perovskite light emitting diodes exhibit the advantages of high color purity, tunable wavelength and low producing cost. Considering these superiorities, one regards perovskite light emitting diodes as very promising candidates for solid state lighting and panel displaying. Human eyes are very sensitive to green light, thus green perovskite light emitting diodes receive the most attention from researchers. Since the advent of the very first green perovskite light emitting diode, the external quantum efficiency has climbed from only 0.1% to over 20%. In this review, we mainly discuss the history of green perovskite light emitting diodes, the basic concepts of perovskite materials and green perovskite light emitting diodes, and the common methods to improve the efficiency of green perovskite light emitting diodes. The bandgap of bromide perovskite is about 2.3 eV, which is located just on a green light wavelength scale and thus becomes the suitable emitting layer material for green emission. There are mainly two types of device structures, i.e. regular format and inverted format. The whole working process of green perovskite light emitting diodes can be divided into two stages, i.e. the injection and recombination of charge carriers. One engineers the energy levels of different layers to improve the injection of charge carriers. They also raise up the strategy so-called surface passivation to reduce the defect density at the interface in order to avoid the quenching phenomenon. One usually inserts a buffering layer to realize the surface passivation. Besides, perovskites possess very small exciton binding energy, which is at the same order of magnitudes as the kinetic energy at room temperature. Charge carriers become free in this case, which will severely reduce the radiation recombination probability due to the non-radiation recombination process such as Shockley-Read-Hall effect and Auger recombination. To solve the problem, people fabricate three types of perovskites, namely quasi two-dimensional perovskite, perovskite quantum dot, and perovskite nanocrystal. In this way, the charge carriers can be confined into a limited space and the exciton binding energy will hence be improved. From the efficiency perspective, the green perovskite light emitting diodes promise to be commercialized. However, another critical issue impeding the development of green perovskite light emitting diodes is the stability problem. Comparing with the organic light emitting diodes and inorganic quantum dot light emitting diodes, the lifetime of perovskite light emitting diodes is too limited, which is only approximately one hundred hours under normal conditions. The temperature, moisture and light exposure are all factors that influence the stability of perovskite light emitting diodes.
      通信作者: 游经碧, jyou@semi.ac.cn
      Corresponding author: You Jing-Bi, jyou@semi.ac.cn
    [1]

    Quan L N, de Arquer F P G, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [4]

    Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [5]

    Chen C H, Tang C W 2001 Appl. Phys. Lett. 79 3711Google Scholar

    [6]

    Dai X L, Deng Y Z, Peng X G, Jin Y Z 2017 Adv. Mater. 29 1607022Google Scholar

    [7]

    Kim Y H, Kim J S, Lee T W 2018 Adv. Mater. DOI: 10.1002/adma.201804595

    [8]

    彭玮婷, 邵双运, 林子钰, 单宏儒, 张洁瑞 2016 光电子·激光 27 1320

    Peng W T, Shao S Y, Lin Z Y, Shan H R, Zhang J R 2016 J. Optoelectron. Laser 27 1320

    [9]

    Li G R, Tan Z K, Di D W, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [10]

    Wang J P, Wang N N, Jin Y Z, Si J J, Tan Z K, Du H, Cheng L, Dai X L, Bai S, He H P, Ye Z Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [11]

    Cho H C, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [12]

    Li J Q, Shan X, Bade S G R, Geske T, Jiang Q L, Yang X, Yu Z B 2016 J. Phys. Chem. Lett. 7 4059Google Scholar

    [13]

    Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar

    [14]

    Zhang L Q, Yang X L, Jiang Q, Wang P Y, Yin Z G, Zhang X W, Tan H R, Yang Y, Wei M Y, Sutherland B R, Sargent E H, You J B 2017 Nat. Commun. 8 15640Google Scholar

    [15]

    Yang X L, Zhang X W, Deng J X, Chu Z M, Jiang Q, Meng J H, Wang P Y, Zhang L Q, Yin Z G, You J B 2018 Nat. Commun. 9 570Google Scholar

    [16]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar

    [17]

    Kim Y H, Lee G H, Kim Y T, Wolf C, Yun H J, Kwon W, Park C G, Lee T W 2017 Nano Energy 38 51Google Scholar

    [18]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [19]

    Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, de Angelis F 2013 J. Phys. Chem. C 117 13902Google Scholar

    [20]

    Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585Google Scholar

    [21]

    Veldhuis S A, Boix P P, Yantara N, Li M J, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [22]

    Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S, Lee T W 2017 Adv. Mater. 29 1605587Google Scholar

    [23]

    Yan F, Xing J, Xing G C, Quan L, Tan S T, Zhao J X, Su R, Zhang L L, Chen S, Zhao Y W, Huan A, Sargent E H, Xiong Q H, Demir H V 2018 Nano Lett. 18 3157Google Scholar

    [24]

    Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A 2014 Energy Environ. Sci. 7 1377Google Scholar

    [25]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [26]

    Adjokatse S, Fang H H, Loi M A 2017 Mater. Today 20 413Google Scholar

    [27]

    Kumar S, Jagielski J, Yakunin S, Rice P, Chiu Y C, Wang M C, Nedelcu G, Kim Y, Lin S C, Santos E J G, Kovalenko M V, Shih C J 2016 ACS Nano 10 9720Google Scholar

    [28]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619Google Scholar

    [29]

    Meng L, Yao E P, Hong Z R, Chen H J, Sun P Y, Yang Z L, Li G, Yang Y 2017 Adv. Mater. 29 1603826Google Scholar

    [30]

    Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W 2016 Adv. Mater. 28 7515Google Scholar

    [31]

    Wang Z J, Huai B X, Yang G J, Wu M G, Yu J S 2018 J. Lumin. 204 110Google Scholar

    [32]

    Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J 2017 ACS Appl. Mater. Interfaces 9 18054Google Scholar

    [33]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [34]

    Song J Z, Fang T, Li J H, Xu L M, Zhang F J, Han B N, Shan Q S, Zeng H B 2018 Adv. Mater. 30 1805409Google Scholar

    [35]

    Deng W, Xu X Z, Zhang X J, Zhang Y D, Jin X C, Wang L, Lee S T, Jie J S 2016 Adv. Funct. Mater. 26 4797Google Scholar

    [36]

    Wang N N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W 2016 Nat. Photon. 10 699Google Scholar

    [37]

    Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [38]

    Si J J, Liu Y, He Z F, Du H, Du K, Chen D, Li J, Xu M M, Tian H, He H P, Di D W, Ling C Q, Cheng Y C, Wang J P, Jin Y Z 2017 ACS Nano 11 11100Google Scholar

    [39]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [40]

    Yambem S D, Liao K S, Alley N J, Curran S A 2012 J. Mater. Chem. 22 6894Google Scholar

    [41]

    Lee S, Park J H, Nam Y S, Lee B R, Zhao B D, Di Nuzzo D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

  • 图 1  GPeLED效率增长趋势

    Fig. 1.  Increasing trend of GPeLED’s EQE.

    图 2  钙钛矿发光二极管的典型结构 (a)正置结构; (b)倒置结构

    Fig. 2.  Typical device structure of PeLED: (a) Regular structure; (b) inverted structure.

    图 3  钙钛矿材料中电子、空穴的复合机制[7]

    Fig. 3.  Recombination mechanisms of electrons and holes in perovskite[7].

    图 4  结构为ITO/PEDOT:PSS/MAPbBr3:PIP/F8/Ca/Ag的器件性能 (a) EQE随电流密度的变化; (b)亮度/电流密度随电压的变化[9]

    Fig. 4.  Devices based on the ITO/PEDOT:PSS/MAPbBr3:PIP/F8/Ca/Ag structure: (a) EQE versus current density; (b) luminance/current density versus voltage[9].

    图 5  (a)纳米晶钉扎法步骤图示; (b)纳米晶扫描电子显微镜(SEM)图[11]

    Fig. 5.  (a) Schematic illustration of NCP processes; (b) SEM image of grains[11].

    图 6  (a)钙钛矿量子点TEM图[32]; (b)量子点PeLED发光峰位的调节[33]

    Fig. 6.  (a) TEM graph of perovskite quantum dot[32]; (b) the gradual change of wavelength from quantum dot PeLED[33].

    图 7  准二维钙钛矿中的能量转移过程[36]

    Fig. 7.  Energy transfer process in the quasi-2D perovskite[36]

    图 8  结构为ITO/Buf-HIL/PEA2MAm–1PbmBr3m+1/TPBi/LiF/Al的器件性能 (a) CE随电压的变化; (b)亮度随电压的变化[30]

    Fig. 8.  Devices based on the ITO/Buf-HIL/PEA2MAm–1PbmBr3m+1/TPBi/LiF/Al structure: (a) Current efficiency vs. voltage; (b) luminance vs. voltage[30].

    图 9  (a) HIL掺杂后的器件能带结构图; (b) HIL掺杂前后器件的电流效率和亮度[15]

    Fig. 9.  (a) Energy band diagram after HIL doping; (b) current efficiency and luminance before and after HIL doping[15].

    图 10  对PEDOT:PSS改性后的器件能带结构图[11]

    Fig. 10.  Energy band diagram of the device after modification to PEDOT:PSS[11].

    图 11  (a) TOPO钝化前后的钙钛矿薄膜光致荧光(PL)谱; (b) TOPO钝化前后的钙钛矿荧光寿命[15]

    Fig. 11.  (a) Photoluminescence spectrum of perovskite thin film with and without TOPO passivation; (b) fluorescence lifetime of perovskite thin film with and without TOPO passivation[15].

    表 1  部分高效GPeLED的工作寿命

    Table 1.  Working lifetime of some high-efficiency GPeLEDs.

    文献器件结构最大EQE/%寿命参数(L0 = 100 cd·m–2)
    [14]ITO/ZnO/PVP/Pero/CBP/MoO3/Al10.43T50 = 10 min
    [41]ITO/PEDOT:PSS/Pero/TPBi/LiF/Al12.1T50 = 135 min
    [15]ITO/PEDOT:PSS/Pero/TOPO/TPBi/LiF/Al14.36T50 = 4.8 h
    [4]ITO/PEDOT:PSS/Pero/PMMA/B3PYMPM/LiF/Al20.3T50 = 104.56 h
    下载: 导出CSV
  • [1]

    Quan L N, de Arquer F P G, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [4]

    Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [5]

    Chen C H, Tang C W 2001 Appl. Phys. Lett. 79 3711Google Scholar

    [6]

    Dai X L, Deng Y Z, Peng X G, Jin Y Z 2017 Adv. Mater. 29 1607022Google Scholar

    [7]

    Kim Y H, Kim J S, Lee T W 2018 Adv. Mater. DOI: 10.1002/adma.201804595

    [8]

    彭玮婷, 邵双运, 林子钰, 单宏儒, 张洁瑞 2016 光电子·激光 27 1320

    Peng W T, Shao S Y, Lin Z Y, Shan H R, Zhang J R 2016 J. Optoelectron. Laser 27 1320

    [9]

    Li G R, Tan Z K, Di D W, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [10]

    Wang J P, Wang N N, Jin Y Z, Si J J, Tan Z K, Du H, Cheng L, Dai X L, Bai S, He H P, Ye Z Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [11]

    Cho H C, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [12]

    Li J Q, Shan X, Bade S G R, Geske T, Jiang Q L, Yang X, Yu Z B 2016 J. Phys. Chem. Lett. 7 4059Google Scholar

    [13]

    Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar

    [14]

    Zhang L Q, Yang X L, Jiang Q, Wang P Y, Yin Z G, Zhang X W, Tan H R, Yang Y, Wei M Y, Sutherland B R, Sargent E H, You J B 2017 Nat. Commun. 8 15640Google Scholar

    [15]

    Yang X L, Zhang X W, Deng J X, Chu Z M, Jiang Q, Meng J H, Wang P Y, Zhang L Q, Yin Z G, You J B 2018 Nat. Commun. 9 570Google Scholar

    [16]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar

    [17]

    Kim Y H, Lee G H, Kim Y T, Wolf C, Yun H J, Kwon W, Park C G, Lee T W 2017 Nano Energy 38 51Google Scholar

    [18]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [19]

    Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, de Angelis F 2013 J. Phys. Chem. C 117 13902Google Scholar

    [20]

    Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585Google Scholar

    [21]

    Veldhuis S A, Boix P P, Yantara N, Li M J, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [22]

    Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S, Lee T W 2017 Adv. Mater. 29 1605587Google Scholar

    [23]

    Yan F, Xing J, Xing G C, Quan L, Tan S T, Zhao J X, Su R, Zhang L L, Chen S, Zhao Y W, Huan A, Sargent E H, Xiong Q H, Demir H V 2018 Nano Lett. 18 3157Google Scholar

    [24]

    Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A 2014 Energy Environ. Sci. 7 1377Google Scholar

    [25]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [26]

    Adjokatse S, Fang H H, Loi M A 2017 Mater. Today 20 413Google Scholar

    [27]

    Kumar S, Jagielski J, Yakunin S, Rice P, Chiu Y C, Wang M C, Nedelcu G, Kim Y, Lin S C, Santos E J G, Kovalenko M V, Shih C J 2016 ACS Nano 10 9720Google Scholar

    [28]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619Google Scholar

    [29]

    Meng L, Yao E P, Hong Z R, Chen H J, Sun P Y, Yang Z L, Li G, Yang Y 2017 Adv. Mater. 29 1603826Google Scholar

    [30]

    Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W 2016 Adv. Mater. 28 7515Google Scholar

    [31]

    Wang Z J, Huai B X, Yang G J, Wu M G, Yu J S 2018 J. Lumin. 204 110Google Scholar

    [32]

    Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J 2017 ACS Appl. Mater. Interfaces 9 18054Google Scholar

    [33]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [34]

    Song J Z, Fang T, Li J H, Xu L M, Zhang F J, Han B N, Shan Q S, Zeng H B 2018 Adv. Mater. 30 1805409Google Scholar

    [35]

    Deng W, Xu X Z, Zhang X J, Zhang Y D, Jin X C, Wang L, Lee S T, Jie J S 2016 Adv. Funct. Mater. 26 4797Google Scholar

    [36]

    Wang N N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W 2016 Nat. Photon. 10 699Google Scholar

    [37]

    Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [38]

    Si J J, Liu Y, He Z F, Du H, Du K, Chen D, Li J, Xu M M, Tian H, He H P, Di D W, Ling C Q, Cheng Y C, Wang J P, Jin Y Z 2017 ACS Nano 11 11100Google Scholar

    [39]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [40]

    Yambem S D, Liao K S, Alley N J, Curran S A 2012 J. Mater. Chem. 22 6894Google Scholar

    [41]

    Lee S, Park J H, Nam Y S, Lee B R, Zhao B D, Di Nuzzo D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

  • [1] 龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏. HL‐2A托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运的研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231749
    [2] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [3] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [4] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [5] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学. 物理学报, 2022, 71(7): 074207. doi: 10.7498/aps.70.20220270
    [6] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [7] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计. 物理学报, 2022, 71(3): 038801. doi: 10.7498/aps.71.20211585
计量
  • 文章访问数:  15673
  • PDF下载量:  614
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-29
  • 修回日期:  2019-05-19
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回