搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效绿光钙钛矿发光二极管研究进展

瞿子涵 储泽马 张兴旺 游经碧

引用本文:
Citation:

高效绿光钙钛矿发光二极管研究进展

瞿子涵, 储泽马, 张兴旺, 游经碧

Research progress of efficient green perovskite light emitting diodes

Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi
PDF
HTML
导出引用
  • 钙钛矿发光二极管具有发光效率高、色纯、发光波长在可见光区间连续可调等优点, 近来成为研究前沿热点. 作为人眼最为敏感的波段, 绿光发射的钙钛矿发光二极管对于白光照明和平板显示具有重要意义, 得到了科研人员的广泛关注. 本文主要介绍绿光钙钛矿发光二极管的发展历史、钙钛矿材料和发光二极管器件的基本结构以及提升绿光钙钛矿发光二极管效率的主要方法. 最后本文对未来绿光钙钛矿发光二极管可能的发展方向进行了简要的预测, 以期对未来该领域的研究提供一些思路.
    Perovskite light emitting diodes exhibit the advantages of high color purity, tunable wavelength and low producing cost. Considering these superiorities, one regards perovskite light emitting diodes as very promising candidates for solid state lighting and panel displaying. Human eyes are very sensitive to green light, thus green perovskite light emitting diodes receive the most attention from researchers. Since the advent of the very first green perovskite light emitting diode, the external quantum efficiency has climbed from only 0.1% to over 20%. In this review, we mainly discuss the history of green perovskite light emitting diodes, the basic concepts of perovskite materials and green perovskite light emitting diodes, and the common methods to improve the efficiency of green perovskite light emitting diodes. The bandgap of bromide perovskite is about 2.3 eV, which is located just on a green light wavelength scale and thus becomes the suitable emitting layer material for green emission. There are mainly two types of device structures, i.e. regular format and inverted format. The whole working process of green perovskite light emitting diodes can be divided into two stages, i.e. the injection and recombination of charge carriers. One engineers the energy levels of different layers to improve the injection of charge carriers. They also raise up the strategy so-called surface passivation to reduce the defect density at the interface in order to avoid the quenching phenomenon. One usually inserts a buffering layer to realize the surface passivation. Besides, perovskites possess very small exciton binding energy, which is at the same order of magnitudes as the kinetic energy at room temperature. Charge carriers become free in this case, which will severely reduce the radiation recombination probability due to the non-radiation recombination process such as Shockley-Read-Hall effect and Auger recombination. To solve the problem, people fabricate three types of perovskites, namely quasi two-dimensional perovskite, perovskite quantum dot, and perovskite nanocrystal. In this way, the charge carriers can be confined into a limited space and the exciton binding energy will hence be improved. From the efficiency perspective, the green perovskite light emitting diodes promise to be commercialized. However, another critical issue impeding the development of green perovskite light emitting diodes is the stability problem. Comparing with the organic light emitting diodes and inorganic quantum dot light emitting diodes, the lifetime of perovskite light emitting diodes is too limited, which is only approximately one hundred hours under normal conditions. The temperature, moisture and light exposure are all factors that influence the stability of perovskite light emitting diodes.
      通信作者: 游经碧, jyou@semi.ac.cn
      Corresponding author: You Jing-Bi, jyou@semi.ac.cn
    [1]

    Quan L N, de Arquer F P G, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [4]

    Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [5]

    Chen C H, Tang C W 2001 Appl. Phys. Lett. 79 3711Google Scholar

    [6]

    Dai X L, Deng Y Z, Peng X G, Jin Y Z 2017 Adv. Mater. 29 1607022Google Scholar

    [7]

    Kim Y H, Kim J S, Lee T W 2018 Adv. Mater. DOI: 10.1002/adma.201804595

    [8]

    彭玮婷, 邵双运, 林子钰, 单宏儒, 张洁瑞 2016 光电子·激光 27 1320

    Peng W T, Shao S Y, Lin Z Y, Shan H R, Zhang J R 2016 J. Optoelectron. Laser 27 1320

    [9]

    Li G R, Tan Z K, Di D W, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [10]

    Wang J P, Wang N N, Jin Y Z, Si J J, Tan Z K, Du H, Cheng L, Dai X L, Bai S, He H P, Ye Z Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [11]

    Cho H C, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [12]

    Li J Q, Shan X, Bade S G R, Geske T, Jiang Q L, Yang X, Yu Z B 2016 J. Phys. Chem. Lett. 7 4059Google Scholar

    [13]

    Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar

    [14]

    Zhang L Q, Yang X L, Jiang Q, Wang P Y, Yin Z G, Zhang X W, Tan H R, Yang Y, Wei M Y, Sutherland B R, Sargent E H, You J B 2017 Nat. Commun. 8 15640Google Scholar

    [15]

    Yang X L, Zhang X W, Deng J X, Chu Z M, Jiang Q, Meng J H, Wang P Y, Zhang L Q, Yin Z G, You J B 2018 Nat. Commun. 9 570Google Scholar

    [16]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar

    [17]

    Kim Y H, Lee G H, Kim Y T, Wolf C, Yun H J, Kwon W, Park C G, Lee T W 2017 Nano Energy 38 51Google Scholar

    [18]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [19]

    Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, de Angelis F 2013 J. Phys. Chem. C 117 13902Google Scholar

    [20]

    Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585Google Scholar

    [21]

    Veldhuis S A, Boix P P, Yantara N, Li M J, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [22]

    Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S, Lee T W 2017 Adv. Mater. 29 1605587Google Scholar

    [23]

    Yan F, Xing J, Xing G C, Quan L, Tan S T, Zhao J X, Su R, Zhang L L, Chen S, Zhao Y W, Huan A, Sargent E H, Xiong Q H, Demir H V 2018 Nano Lett. 18 3157Google Scholar

    [24]

    Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A 2014 Energy Environ. Sci. 7 1377Google Scholar

    [25]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [26]

    Adjokatse S, Fang H H, Loi M A 2017 Mater. Today 20 413Google Scholar

    [27]

    Kumar S, Jagielski J, Yakunin S, Rice P, Chiu Y C, Wang M C, Nedelcu G, Kim Y, Lin S C, Santos E J G, Kovalenko M V, Shih C J 2016 ACS Nano 10 9720Google Scholar

    [28]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619Google Scholar

    [29]

    Meng L, Yao E P, Hong Z R, Chen H J, Sun P Y, Yang Z L, Li G, Yang Y 2017 Adv. Mater. 29 1603826Google Scholar

    [30]

    Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W 2016 Adv. Mater. 28 7515Google Scholar

    [31]

    Wang Z J, Huai B X, Yang G J, Wu M G, Yu J S 2018 J. Lumin. 204 110Google Scholar

    [32]

    Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J 2017 ACS Appl. Mater. Interfaces 9 18054Google Scholar

    [33]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [34]

    Song J Z, Fang T, Li J H, Xu L M, Zhang F J, Han B N, Shan Q S, Zeng H B 2018 Adv. Mater. 30 1805409Google Scholar

    [35]

    Deng W, Xu X Z, Zhang X J, Zhang Y D, Jin X C, Wang L, Lee S T, Jie J S 2016 Adv. Funct. Mater. 26 4797Google Scholar

    [36]

    Wang N N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W 2016 Nat. Photon. 10 699Google Scholar

    [37]

    Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [38]

    Si J J, Liu Y, He Z F, Du H, Du K, Chen D, Li J, Xu M M, Tian H, He H P, Di D W, Ling C Q, Cheng Y C, Wang J P, Jin Y Z 2017 ACS Nano 11 11100Google Scholar

    [39]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [40]

    Yambem S D, Liao K S, Alley N J, Curran S A 2012 J. Mater. Chem. 22 6894Google Scholar

    [41]

    Lee S, Park J H, Nam Y S, Lee B R, Zhao B D, Di Nuzzo D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

  • 图 1  GPeLED效率增长趋势

    Fig. 1.  Increasing trend of GPeLED’s EQE.

    图 2  钙钛矿发光二极管的典型结构 (a)正置结构; (b)倒置结构

    Fig. 2.  Typical device structure of PeLED: (a) Regular structure; (b) inverted structure.

    图 3  钙钛矿材料中电子、空穴的复合机制[7]

    Fig. 3.  Recombination mechanisms of electrons and holes in perovskite[7].

    图 4  结构为ITO/PEDOT:PSS/MAPbBr3:PIP/F8/Ca/Ag的器件性能 (a) EQE随电流密度的变化; (b)亮度/电流密度随电压的变化[9]

    Fig. 4.  Devices based on the ITO/PEDOT:PSS/MAPbBr3:PIP/F8/Ca/Ag structure: (a) EQE versus current density; (b) luminance/current density versus voltage[9].

    图 5  (a)纳米晶钉扎法步骤图示; (b)纳米晶扫描电子显微镜(SEM)图[11]

    Fig. 5.  (a) Schematic illustration of NCP processes; (b) SEM image of grains[11].

    图 6  (a)钙钛矿量子点TEM图[32]; (b)量子点PeLED发光峰位的调节[33]

    Fig. 6.  (a) TEM graph of perovskite quantum dot[32]; (b) the gradual change of wavelength from quantum dot PeLED[33].

    图 7  准二维钙钛矿中的能量转移过程[36]

    Fig. 7.  Energy transfer process in the quasi-2D perovskite[36]

    图 8  结构为ITO/Buf-HIL/PEA2MAm–1PbmBr3m+1/TPBi/LiF/Al的器件性能 (a) CE随电压的变化; (b)亮度随电压的变化[30]

    Fig. 8.  Devices based on the ITO/Buf-HIL/PEA2MAm–1PbmBr3m+1/TPBi/LiF/Al structure: (a) Current efficiency vs. voltage; (b) luminance vs. voltage[30].

    图 9  (a) HIL掺杂后的器件能带结构图; (b) HIL掺杂前后器件的电流效率和亮度[15]

    Fig. 9.  (a) Energy band diagram after HIL doping; (b) current efficiency and luminance before and after HIL doping[15].

    图 10  对PEDOT:PSS改性后的器件能带结构图[11]

    Fig. 10.  Energy band diagram of the device after modification to PEDOT:PSS[11].

    图 11  (a) TOPO钝化前后的钙钛矿薄膜光致荧光(PL)谱; (b) TOPO钝化前后的钙钛矿荧光寿命[15]

    Fig. 11.  (a) Photoluminescence spectrum of perovskite thin film with and without TOPO passivation; (b) fluorescence lifetime of perovskite thin film with and without TOPO passivation[15].

    表 1  部分高效GPeLED的工作寿命

    Table 1.  Working lifetime of some high-efficiency GPeLEDs.

    文献器件结构最大EQE/%寿命参数(L0 = 100 cd·m–2)
    [14]ITO/ZnO/PVP/Pero/CBP/MoO3/Al10.43T50 = 10 min
    [41]ITO/PEDOT:PSS/Pero/TPBi/LiF/Al12.1T50 = 135 min
    [15]ITO/PEDOT:PSS/Pero/TOPO/TPBi/LiF/Al14.36T50 = 4.8 h
    [4]ITO/PEDOT:PSS/Pero/PMMA/B3PYMPM/LiF/Al20.3T50 = 104.56 h
    下载: 导出CSV
  • [1]

    Quan L N, de Arquer F P G, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [4]

    Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [5]

    Chen C H, Tang C W 2001 Appl. Phys. Lett. 79 3711Google Scholar

    [6]

    Dai X L, Deng Y Z, Peng X G, Jin Y Z 2017 Adv. Mater. 29 1607022Google Scholar

    [7]

    Kim Y H, Kim J S, Lee T W 2018 Adv. Mater. DOI: 10.1002/adma.201804595

    [8]

    彭玮婷, 邵双运, 林子钰, 单宏儒, 张洁瑞 2016 光电子·激光 27 1320

    Peng W T, Shao S Y, Lin Z Y, Shan H R, Zhang J R 2016 J. Optoelectron. Laser 27 1320

    [9]

    Li G R, Tan Z K, Di D W, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [10]

    Wang J P, Wang N N, Jin Y Z, Si J J, Tan Z K, Du H, Cheng L, Dai X L, Bai S, He H P, Ye Z Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [11]

    Cho H C, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [12]

    Li J Q, Shan X, Bade S G R, Geske T, Jiang Q L, Yang X, Yu Z B 2016 J. Phys. Chem. Lett. 7 4059Google Scholar

    [13]

    Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar

    [14]

    Zhang L Q, Yang X L, Jiang Q, Wang P Y, Yin Z G, Zhang X W, Tan H R, Yang Y, Wei M Y, Sutherland B R, Sargent E H, You J B 2017 Nat. Commun. 8 15640Google Scholar

    [15]

    Yang X L, Zhang X W, Deng J X, Chu Z M, Jiang Q, Meng J H, Wang P Y, Zhang L Q, Yin Z G, You J B 2018 Nat. Commun. 9 570Google Scholar

    [16]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar

    [17]

    Kim Y H, Lee G H, Kim Y T, Wolf C, Yun H J, Kwon W, Park C G, Lee T W 2017 Nano Energy 38 51Google Scholar

    [18]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [19]

    Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, de Angelis F 2013 J. Phys. Chem. C 117 13902Google Scholar

    [20]

    Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585Google Scholar

    [21]

    Veldhuis S A, Boix P P, Yantara N, Li M J, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [22]

    Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S, Lee T W 2017 Adv. Mater. 29 1605587Google Scholar

    [23]

    Yan F, Xing J, Xing G C, Quan L, Tan S T, Zhao J X, Su R, Zhang L L, Chen S, Zhao Y W, Huan A, Sargent E H, Xiong Q H, Demir H V 2018 Nano Lett. 18 3157Google Scholar

    [24]

    Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A 2014 Energy Environ. Sci. 7 1377Google Scholar

    [25]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [26]

    Adjokatse S, Fang H H, Loi M A 2017 Mater. Today 20 413Google Scholar

    [27]

    Kumar S, Jagielski J, Yakunin S, Rice P, Chiu Y C, Wang M C, Nedelcu G, Kim Y, Lin S C, Santos E J G, Kovalenko M V, Shih C J 2016 ACS Nano 10 9720Google Scholar

    [28]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619Google Scholar

    [29]

    Meng L, Yao E P, Hong Z R, Chen H J, Sun P Y, Yang Z L, Li G, Yang Y 2017 Adv. Mater. 29 1603826Google Scholar

    [30]

    Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W 2016 Adv. Mater. 28 7515Google Scholar

    [31]

    Wang Z J, Huai B X, Yang G J, Wu M G, Yu J S 2018 J. Lumin. 204 110Google Scholar

    [32]

    Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J 2017 ACS Appl. Mater. Interfaces 9 18054Google Scholar

    [33]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [34]

    Song J Z, Fang T, Li J H, Xu L M, Zhang F J, Han B N, Shan Q S, Zeng H B 2018 Adv. Mater. 30 1805409Google Scholar

    [35]

    Deng W, Xu X Z, Zhang X J, Zhang Y D, Jin X C, Wang L, Lee S T, Jie J S 2016 Adv. Funct. Mater. 26 4797Google Scholar

    [36]

    Wang N N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W 2016 Nat. Photon. 10 699Google Scholar

    [37]

    Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [38]

    Si J J, Liu Y, He Z F, Du H, Du K, Chen D, Li J, Xu M M, Tian H, He H P, Di D W, Ling C Q, Cheng Y C, Wang J P, Jin Y Z 2017 ACS Nano 11 11100Google Scholar

    [39]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [40]

    Yambem S D, Liao K S, Alley N J, Curran S A 2012 J. Mater. Chem. 22 6894Google Scholar

    [41]

    Lee S, Park J H, Nam Y S, Lee B R, Zhao B D, Di Nuzzo D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

  • [1] 张俊廷, 纪克, 谢禹, 李超. 基于钙钛矿的二维铁磁体Sr2RuO4单层. 物理学报, 2024, 73(22): 226101. doi: 10.7498/aps.73.20241042
    [2] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [3] 余毅, 安治东, 蔡晓艺, 郭明磊, 敬承斌, 李艳青. 锡基钙钛矿的研究进展及其在发光二极管中的应用. 物理学报, 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [4] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [5] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [6] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [7] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [8] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [9] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [10] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛. 有机添加剂在金属卤化钙钛矿发光二极管中的应用. 物理学报, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [11] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [12] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [13] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [14] 陈湛旭, 万巍, 何影记, 陈耿炎, 陈泳竹. 利用单层密排的纳米球提高发光二极管的出光效率. 物理学报, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [15] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究. 物理学报, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [16] 李飞, 肖刘, 刘濮鲲, 袁广江, 易红霞, 万晓声. 行波管中多级降压收集极效率评估的研究. 物理学报, 2012, 61(10): 102901. doi: 10.7498/aps.61.102901
    [17] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究. 物理学报, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [18] 林瀚, 刘守, 张向苏, 刘宝林, 任雪畅. 全息技术制作二维光子晶体蓝宝石衬底提高发光二极管外量子效率. 物理学报, 2009, 58(2): 959-963. doi: 10.7498/aps.58.959
    [19] 陈健, 李小丽, 李海华, 王庆康. 基于正方和六角排列结构光子晶体对发光二极管出光效率的研究. 物理学报, 2009, 58(9): 6216-6221. doi: 10.7498/aps.58.6216
    [20] 李炳乾, 刘玉华, 冯玉春. 大功率GaN基发光二极管等效串联电阻的功率耗散及其对发光效率的影响. 物理学报, 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
计量
  • 文章访问数:  20434
  • PDF下载量:  715
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-29
  • 修回日期:  2019-05-19
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回