-
Hybrid perovskites are a series of solution-processable materials for photovoltaic devices. To achieve better performance and stability, interface passivation is an effective method. So far, the most commonly used passivators are organic amines, which can tailor perovskite into a lower-dimensional structure (Ruddlesden-Popper perovskite). Here, we select a biimizole (BIM) molecule as a new passivator for perovskite. The BIM based single layer perovskite has a more rigid structure. And multi-layered structure cannot be formed due to large lattice mismatching and structural rigidity. By inducing the excess MAI (methanaminium iodide) into the lattice, the layered structure is maintained, and half of the BIM molecules are replaced by MA (methylamine). The mixed layered structure is distorted, because of the difference in size between two kinds of cations. We then investigate passivation effect of BIM on perovskite solar cells. By carefully controlling the feed ratio in precursor solutions, we fabricate solar cells with different passivation structures. We find that the introduction of BIM can cause Voc to increase generally, indicating that MAPbI3 is well passivated. The peak at 7.5° and 15° in X-ray diffraction pattern are corresponding to a two-dimensional (2D) phase with a shorter layer distance. There are no peaks at lower degrees, so that no multi-layered structure is formed in the film either. We suppose that a dual-phase 2D-3D (where 3D represents three-dimensional) structure is formed in the perovskite film. To explain the passivation effect of the two 2D structures, we investigate their lattice matching towards MAPbI3. The distorted 2D structure is well matched with (110) face of o-MAPbI3, and the mismatching rate is lower 1% in the two directions. On the other hand, the BIM based 2D structure cannot well match with (–110) face of o-MAPbI3, nor with (001) face of c-MAPbI3. We also consider that the less rigidity of distorted structure contributes to better passivation. As a result, we achieve a BIM passivated perovskite solar cell with a power conversion efficiency up to 14%. This work paves a new way to the interface engineering of perovskite solar cells.
-
Keywords:
- perovskite /
- solar cell /
- two-dimensional structure
[1] Luo W, Wu C, Wang D, Zhang Y, Zhang Z, Qi X, Zhu N, Guo X, Qu B, Xiao L, Chen Z 2019 ACS Appl. Mater. Interfaces 11 9149Google Scholar
[2] Shang Y, Li G, Liu W, Ning Z 2018 Adv. Funct. Mater. 28 1801193Google Scholar
[3] Yang R, Li R, Cao Y, Wei Y, Miao Y, Tan W L, Jiao X, Chen H, Zhang L, Chen Q, Zhang H, Zou W, Wang Y, Yang M, Yi C, Wang N, Gao F, McNeill C R, Qin T, Wang J, Huang W 2018 Adv. Mater. 30 e1804771Google Scholar
[4] Si J, Liu Y, He Z, Du H, Du K, Chen D, Li J, Xu M, Tian H, He H, Di D, Lin C, Cheng Y, Wang J, Jin Y 2017 ACS Nano 11 11100Google Scholar
[5] Raghavan C M, Chen T P, Li S S, Chen W L, Lo C Y, Liao Y M, Haider G, Lin C C, Chen C C, Sankar R, Chang Y M, Chou F C, Chen C W 2018 Nano Lett. 18 3221Google Scholar
[6] Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mater. 28 2852Google Scholar
[7] Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G 2016 Nature 536 312Google Scholar
[8] Wang K, Wu C, Yang D, Jiang Y, Priya S 2018 ACS Nano 12 4919Google Scholar
[9] Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q, Sargent E H, Ning Z 2017 J. Am. Chem. Soc. 139 6693Google Scholar
[10] Quintero-Bermudez R, Gold-Parker A, Proppe A H, Munir R, Yang Z, Kelley S O, Amassian A, Toney M F, Sargent E H 2018 Nat. Mater. 17 900Google Scholar
[11] Qiu J, Zheng Y, Xia Y, Chao L, Chen Y, Huang W 2018 Adv. Funct. Mater. DOI: 10.1002/adfm.201806831
[12] Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y 2018 J. Am. Chem. Soc. 140 11639Google Scholar
[13] Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S 2018 Adv. Energy Mater. 8 1800051
[14] Cheng P, Xu Z, Li J, Liu Y, Fan Y, Yu L, Smilgies D M, Müller C, Zhao K, Liu S F 2018 ACS Energy Lett. 3 1975Google Scholar
[15] Zhang T, Cao Z, Shang Y, Cui C, Fu P, Jiang X, Wang F, Xu K, Yin D, Qu D, Ning Z 2018 J. Photochem. Photobiol. A: Chem. 355 42Google Scholar
[16] Chao L, Niu T, Xia Y, Ran X, Chen Y, Huang W 2019 J. Phys. Chem. Lett. 10 1173
[17] Liu D, Zhou W, Tang H, Fu P, Ning Z 2018 Sci. China: Chem. 61 1278Google Scholar
[18] You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, de Marco N, Yang Y 2016 Nat. Nanotech. 11 75Google Scholar
[19] Billing D G, Lemmerer A 2007 Acta Crystallogr. B 63 735Google Scholar
[20] Tang Z, Guan J, Guloy A M 2001 J. Mater. Chem. 11 479Google Scholar
[21] Niu G, Li W, Li J, Wang L 2016 Sci. Chi. Mater. 59 728Google Scholar
[22] Qing J, Liu X K, Li M, Liu F, Yuan Z, Tiukalova E, Yan Z, Duchamp M, Chen S, Wang Y, Bai S, Liu J M, Snaith H J, Lee C S, Sum T C, Gao F 2018 Adv. Energy Mater. 8 1800185
[23] Yu S, Yan Y, Chen Y, Chábera P, Zheng K, Liang Z 2019 J. Mater. Chem. A 7 2015Google Scholar
[24] Stoumpos C C, Soe C M M, Tsai H, Nie W, Blancon J C, Cao D H, Liu F, Traoré B, Katan C, Even J, Mohite A D, Kanatzidis M G 2017 Chem 2 427Google Scholar
[25] Zuo C, Scully A D, Vak D, Tan W, Jiao X, McNeill C R, Angmo D, Ding L, Gao M 2019 Adv. Energy Mater. 9 1803258Google Scholar
[26] Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, Wasielewski M R, Stoumpos C C, Kanatzidis M G 2018 J. Am. Chem. Soc. 140 3775Google Scholar
[27] Ke W, Mao L, Stoumpos C C, Hoffman J, Spanopoulos I, Mohite A D, Kanatzidis M G 2019 Adv. Energy Mater. 9 1803384Google Scholar
[28] Li Y, Milić J V, Ummadisingu A, Seo J Y, Im J H, Kim H S, Liu Y, Dar M I, Zakeeruddin S M, Wang P, Hagfeldt A, Grätzel M 2019 Nano Lett. 19 150
[29] Cohen B E, Li Y, Meng Q, Etgar L 2019 Nano Lett. 19 2588
-
图 4 晶界的钝化模型 (a) MA2BIMPb2I8 (002)面与MAPbI3 (110)面晶格匹配; (b) BIMPbI4 (002)面与MAPbI3 (–110)面晶格匹配; (c) 晶面透视图及两个方向上的晶格参数; (d)钙钛矿钝化模型
Fig. 4. Passivation model of interfaces: (a) Lattice matching of MA2BIMPb2I8 (002) and MAPbI3 (110); (b) lattice matching of BIMPbI4 (002) and MAPbI3 (–110); (c) perspective of layered crystal and lattice parameter of two directions; (d) passivation of perovskite.
表 A2 器件制备前驱液配方
Table A2. Composition of perovskite precursor solutions
组成 投料摩尔比(BIMI2:MAI:PbI2) BIM0.2MA0.8PbI3.2 (BIMPbI4:MAPbI3 = 0.2 : 0.8) 0.2 : 0.8 : 1 BIM0.1MA0.9PbI3.1 (BIMPbI4:MAPbI3 = 0.1 : 0.9) 0.1 : 0.9 : 1 BIM0.2MAPbI3.4 (MA2BIMPb2I8:MAPbI3 = 0.1 : 0.8) 0.2 : 1 : 1 BIM0.1MAPbI3.2 (MA2BIMPb2I8:MAPbI3 = 0.05 : 0.9) 0.1 : 1 : 1 表 A3 器件基本参数
Table A3. Parameters of solar cell devices
组成 开路电压Voc/V 短路电流Jsc/ mA·cm–2 填充因子FF/% 转换效率η/% BIM0.2MA0.8PbI3.2 1.08 8.90 45.8 4.41 BIM0.1MA0.9PbI3.1 1.01 15.90 67.6 10.89 BIM0.2MAPbI3.4 1.07 14.72 66.1 10.46 BIM0.1MAPbI3.2 1.08 17.25 75.12 14.06 表 A4 钝化模型参数总结
Table A4. Summary of parameters in the passivation model
二维晶面 晶格间距/Å (横向, 纵向) 钝化晶面 晶格间距/Å (横向, 纵向) 失配率 (横向, 纵向) MA2BIMPb2I8 (002) 6.25, 6.38 正交MAPbI3 (110) 6.26, 6.32 0.16%, 0.95% BIMPbI4 (002) 6.45, 6.45 正交MAPbI3 (–110) 6.32, 6.26 2.06%, 3.04% 立方MAPbI3 (001) 6.31, 6.31 2.22%, 2.22% 表 A1 MA2BIMPb2I8 单晶数据报告
Table A1. Crystallographic parameter of MA2BIMPb2I8
参数 取值 Compound MA2BIMPb2I8 Formula weight 1628.6 Temperature/K 249.99 Crystal system orthorhombic Space group Pmna a/Å 12.5016(7) b/Å 6.3876(4) c/Å 18.8380(12) α/(°) 90.00 β/(°) 90.00 γ/(°) 90.00 Volume/Å3 1504.31(16) Z 4 ρcalc/g·cm–3 5.581 μ/mm–1 46.218 F(000) 2086.0 Radiation Mo Kα (λ = 0.71073) 2θ range for data collection/(°) 6.38 to 52.72 Index ranges –15 ≤ h ≤ 15, –7 ≤ k ≤ 7, –23 ≤ l ≤ 23 Reflections collected 12046 Independent reflections 1608 [Rint = 0.0780, Rsigma = 0.0442] Data/restraints/parameters 1608/0/64 Goodness-of-fit on F2 1.039 Final R indexes [I ≥ 2σ(I)] R1 = 0.0485, wR2 = 0.1043 Final R indexes [all data] R1 = 0.0767, wR2 = 0.1171 Largest diff. peak/hole/e·Å–3 3.45/–2.09 表 A5 近期二维钙钛矿太阳能电池进展
Table A5. Recent advances of 2D perovskite solar cells
组成 类型/层数 Voc/V Jsc /mA·cm-2 FF/% η/% (PEA)2(MA)3Pb4I13 RP (4) 1.16 14.7 77 12.1[22] (BA)2MA3Pb4I13 RP (4) 0.99 18.43 75.2 13.8[16] (BEA)2MA3Pb4I13 RP (4) 1.01 20.63 78.0 16.1[16] (BYA)2MA3Pb4I13 RP (4) 1.01 19.53 76.4 15.1[16] (PEA)2MA3Pb4I13 RP (4) 1.14 18.78 62 13.41[23] BA2MA4Pb5I16 RP (5) 0.99 11.67 72.1 8.32[24] PA2MA4Pb5I16 RP (5) 1.13 18.89 49 10.41[14] (BA)2(MA)3Pb4I13 RP (4) 1.06 16.6 70.9 12.5[25] 3AMP(MA)3Pb4I13 DJ (4) 1.06 10.17 67.6 7.33[26] 3AMP(MA0.75FA0.25)3Pb4I13 DJ (4) 1.09 13.69 81.04 12.04[27] (PDMA)FA2Pb3I10 DJ (3) 0.84 11.48 72.1 7.11[28] BzDA(Cs0.05MA0.15FA0.8)9Pb10(I0.93Br0.07)31 DJ (10) 1.02 21.5 71 15.6[29] BIM0.2MAPbI3.4 4 1.07 14.72 66.1 10.46 BIM0.1MAPbI3.2 9 1.08 17.25 75.1 14.06 -
[1] Luo W, Wu C, Wang D, Zhang Y, Zhang Z, Qi X, Zhu N, Guo X, Qu B, Xiao L, Chen Z 2019 ACS Appl. Mater. Interfaces 11 9149Google Scholar
[2] Shang Y, Li G, Liu W, Ning Z 2018 Adv. Funct. Mater. 28 1801193Google Scholar
[3] Yang R, Li R, Cao Y, Wei Y, Miao Y, Tan W L, Jiao X, Chen H, Zhang L, Chen Q, Zhang H, Zou W, Wang Y, Yang M, Yi C, Wang N, Gao F, McNeill C R, Qin T, Wang J, Huang W 2018 Adv. Mater. 30 e1804771Google Scholar
[4] Si J, Liu Y, He Z, Du H, Du K, Chen D, Li J, Xu M, Tian H, He H, Di D, Lin C, Cheng Y, Wang J, Jin Y 2017 ACS Nano 11 11100Google Scholar
[5] Raghavan C M, Chen T P, Li S S, Chen W L, Lo C Y, Liao Y M, Haider G, Lin C C, Chen C C, Sankar R, Chang Y M, Chou F C, Chen C W 2018 Nano Lett. 18 3221Google Scholar
[6] Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mater. 28 2852Google Scholar
[7] Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G 2016 Nature 536 312Google Scholar
[8] Wang K, Wu C, Yang D, Jiang Y, Priya S 2018 ACS Nano 12 4919Google Scholar
[9] Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q, Sargent E H, Ning Z 2017 J. Am. Chem. Soc. 139 6693Google Scholar
[10] Quintero-Bermudez R, Gold-Parker A, Proppe A H, Munir R, Yang Z, Kelley S O, Amassian A, Toney M F, Sargent E H 2018 Nat. Mater. 17 900Google Scholar
[11] Qiu J, Zheng Y, Xia Y, Chao L, Chen Y, Huang W 2018 Adv. Funct. Mater. DOI: 10.1002/adfm.201806831
[12] Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y 2018 J. Am. Chem. Soc. 140 11639Google Scholar
[13] Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S 2018 Adv. Energy Mater. 8 1800051
[14] Cheng P, Xu Z, Li J, Liu Y, Fan Y, Yu L, Smilgies D M, Müller C, Zhao K, Liu S F 2018 ACS Energy Lett. 3 1975Google Scholar
[15] Zhang T, Cao Z, Shang Y, Cui C, Fu P, Jiang X, Wang F, Xu K, Yin D, Qu D, Ning Z 2018 J. Photochem. Photobiol. A: Chem. 355 42Google Scholar
[16] Chao L, Niu T, Xia Y, Ran X, Chen Y, Huang W 2019 J. Phys. Chem. Lett. 10 1173
[17] Liu D, Zhou W, Tang H, Fu P, Ning Z 2018 Sci. China: Chem. 61 1278Google Scholar
[18] You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, de Marco N, Yang Y 2016 Nat. Nanotech. 11 75Google Scholar
[19] Billing D G, Lemmerer A 2007 Acta Crystallogr. B 63 735Google Scholar
[20] Tang Z, Guan J, Guloy A M 2001 J. Mater. Chem. 11 479Google Scholar
[21] Niu G, Li W, Li J, Wang L 2016 Sci. Chi. Mater. 59 728Google Scholar
[22] Qing J, Liu X K, Li M, Liu F, Yuan Z, Tiukalova E, Yan Z, Duchamp M, Chen S, Wang Y, Bai S, Liu J M, Snaith H J, Lee C S, Sum T C, Gao F 2018 Adv. Energy Mater. 8 1800185
[23] Yu S, Yan Y, Chen Y, Chábera P, Zheng K, Liang Z 2019 J. Mater. Chem. A 7 2015Google Scholar
[24] Stoumpos C C, Soe C M M, Tsai H, Nie W, Blancon J C, Cao D H, Liu F, Traoré B, Katan C, Even J, Mohite A D, Kanatzidis M G 2017 Chem 2 427Google Scholar
[25] Zuo C, Scully A D, Vak D, Tan W, Jiao X, McNeill C R, Angmo D, Ding L, Gao M 2019 Adv. Energy Mater. 9 1803258Google Scholar
[26] Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, Wasielewski M R, Stoumpos C C, Kanatzidis M G 2018 J. Am. Chem. Soc. 140 3775Google Scholar
[27] Ke W, Mao L, Stoumpos C C, Hoffman J, Spanopoulos I, Mohite A D, Kanatzidis M G 2019 Adv. Energy Mater. 9 1803384Google Scholar
[28] Li Y, Milić J V, Ummadisingu A, Seo J Y, Im J H, Kim H S, Liu Y, Dar M I, Zakeeruddin S M, Wang P, Hagfeldt A, Grätzel M 2019 Nano Lett. 19 150
[29] Cohen B E, Li Y, Meng Q, Etgar L 2019 Nano Lett. 19 2588
计量
- 文章访问数: 13112
- PDF下载量: 233
- 被引次数: 0