-
近年来有机-无机杂化钙钛矿材料因其吸收系数高、成本低廉、制备工艺简单等优点吸引了大批科研人员进行研究, 目前在实验室制备的电池能量转换效率已经超过23%. 钙钛矿太阳能电池一般采用溶液法逐层制备, 在此过程中由于退火温度、结晶速率等因素的影响, 钙钛矿内部以及界面会产生大量的缺陷, 这些缺陷会增加载流子复合概率, 降低载流子寿命, 严重影响钙钛矿太阳能电池的性能. 因此研究和理解钙钛矿的缺陷对制备高效钙钛矿太阳能电池至关重要. 本文讨论了在正式结构中, 钙钛矿太阳能电池缺陷的产生以及缺陷对钙钛矿太阳能电池的影响, 分析了不同材料钝化电子传输层/钙钛矿层界面以及钙钛矿层/空穴传输层界面缺陷的机理, 对比了不同钝化材料对钙钛矿太阳能电池光伏性能的影响, 总结了界面钝化材料在钙钛矿太阳能电池中的作用. 最后指出了钙钛矿太阳能电池钝化缺陷的研究趋势和发展方向.In recent years, organic-inorganic hybrid perovskite solar cells have aroused the interest of a large number of researchers due to the advantages of large optical absorption coefficient, tunable bandgap and easy fabrication. Recently, the power conversion efficiency of organic-inorganic hybrid perovskite solar cells has been enhanced to more than 23% in laboratory. In solution processed perovskite solar cells, perovskite and charge transport layer are stacked together, due to the different crystallization rates leading to lattice mismatch near the surface region of perovskite film, resulting in a lot of interface defects, especially at the interface between perovskite and charge transport layer. What is more, the photo-induced free carriers must transfer across the interfaces to be collected. But the defects near the interface can trap photogeneration electrons, thus reducing the carrier lifetime and causing the charges to be recombined, which greatly influence the performance and stability of perovskite solar cells. Therefore, reducing and passivating these defects is critical for obtaining the high performance perovskite solar cells. Now, there have been made tremendous efforts devoting to advancing passivation techniques, such as doping and surface modification, for high efficiency perovskite solar cell with improved stability and reduced hysteresis. These approaches also contribute to improving the energy band alignment between carrier transport layers and perovskite absorber improving device performance, or resistance moisture to enhance device stability. In this review we mainly introduce the formation and the effect of defects on perovskite solar cells, analyze the mechanism for passivating the interfacial defects between charge transport layer and perovskite photo absorption layer for different materials, compare the effects of different passivation materials on the photovoltaic performance of perovskite solar cells, and summarize the role of these materials in passivating the defects. Finally we discuss the research trend and development direction of passivation defects in perovskite solar cells.
-
Keywords:
- perovskite solar cell /
- passivation defects /
- interface modification
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] NREL https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies.pdf [2019-03-31]
[3] Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, Tremolet de Villers B J, Sellinger A, Berry J J, Luther J M 2018 Nat. Energy 3 68Google Scholar
[4] Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T, Han L 2017 Adv. Mater. 29 1701073Google Scholar
[5] Lin Y, Bai Y, Fang Y, Chen Z, Yang S, Zheng X, Tang S, Liu Y, Zhao J, Huang J 2018 J. Phys. Chem. Lett. 9 654Google Scholar
[6] Ball J M, Petrozza A 2016 Nat. Energy 1 16149Google Scholar
[7] Meggiolaro D, Mosconi E, De Angelis F 2017 ACS Energy Lett. 2 2794Google Scholar
[8] Kieslich G, Sun S, Cheetham A K 2014 Chem. Sci. 5 4712Google Scholar
[9] Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G 2016 Chem. Sci. 7 4548Google Scholar
[10] Cai B, Xing Y, Yang Z, Zhang W H, Qiu J 2013 Energy Environ. Sci. 6 1480Google Scholar
[11] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar
[12] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[13] Chen B, Bai Y, Yu Z, Li T, Zheng X, Dong Q, Shen L, Boccard M, Gruverman A, Holman Z, Huang J 2016 Adv. Energy Mater. 6 1601128Google Scholar
[14] Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar
[15] Bush K A, Palmstrom A F, Yu Z J, et al. 2017 Nat. Energy 2 17009Google Scholar
[16] Li B, Ferguson V, Silva S R P, Zhang W 2018 Adv. Mater. Interfaces 5 1800326Google Scholar
[17] Liu N, Yam C 2018 Phys. Chem. Chem. Phys. 20 6800Google Scholar
[18] Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar
[19] Li W, Liu J, Bai F Q, Zhang H X, Prezhdo O V 2017 ACS Energy Lett. 2 1270Google Scholar
[20] Xiao Z, Yuan Y, Wang Q, Shao Y, Bai Y, Deng Y, Dong Q, Hu M, Bi C, Huang J 2016 Materials Science and Engineering R 101 1Google Scholar
[21] Sherkar T S, Momblona C, Gil-Escrig L, Ávila J, Sessolo M, Bolink H J, Koster L J A 2017 ACS Energy Lett. 2 1214Google Scholar
[22] Queisser H J, Haller E E 1998 Science 281 945Google Scholar
[23] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784Google Scholar
[24] Collins J 2015 ECS J. Solid State Sci. Technol. 5 R3170
[25] Ran C, Xu J, Gao W, Huang C, Dou S 2018 Chem. Soc. Rev. 47 4581Google Scholar
[26] Conwell E, Weisskopf V F 1950 Phys. Rev. 77 388Google Scholar
[27] Yuan S, Wang J, Yang K, Wang P, Zhang X, Zhan Y, Zheng L 2018 Nanoscale 10 18909Google Scholar
[28] Hou Y, Chen W, Baran D, Stubhan T, Luechinger N A, Hartmeier B, Richter M, Min J, Chen S, Quiroz C O, Li N, Zhang H, Heumueller T, Matt G J, Osvet A, Forberich K, Zhang Z G, Li Y, Winter B, Schweizer P, Spiecker E, Brabec C J 2016 Adv. Mater. 28 5112Google Scholar
[29] Tress W, Marinova N, Inganäs O, Nazeeruddin M K, Zakeeruddin S M, Graetzel M 2015 Adv. Energy Mater. 5 1400812Google Scholar
[30] Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nat. Commun. 4 2242Google Scholar
[31] Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar
[32] Yoon H, Kang S M, Lee J K, Choi M 2016 Energy Environ. Sci. 9 2262Google Scholar
[33] Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumüller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690Google Scholar
[34] Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422Google Scholar
[35] Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar
[36] Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A 2017 Nat. Commun. 8 15218Google Scholar
[37] Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A 2015 Angew. Chem. Int. Edit. 54 8208Google Scholar
[38] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar
[39] Du M H 2015 J. Phys. Chem. Lett. 6 1461Google Scholar
[40] Jiang H, Jiang G, Xing W, Xiong W, Zhang X, Wang B, Zhang H, Zheng Y 2018 ACS Appl. Mater. Interfaces 10 29954Google Scholar
[41] Sidhik S, Panikar S S, Pérez C R, Luke T L, Carriles R, Carrera S C, de la Rosa E 2018 ACS Sustainable Chem. Eng. 6 15391Google Scholar
[42] Wang P, Wang J, Zhang X, Wang H, Cui X, Yuan S, Lu H, Tu L, Zhan Y, Zheng L 2018 J. Mater. Chem. A 6 15853Google Scholar
[43] Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar
[44] Li W, Zhang W, Van Reenen S, Sutton R J, Fan J, Haghighirad A A, Johnston M B, Wang L, Snaith H J 2016 Energy Environ. Sci. 9 490Google Scholar
[45] Wang Z, Kamarudin M A, Huey N C, Yang F, Pandey M, Kapil G, Ma T, Hayase S 2018 ChemSusChem 11 3941Google Scholar
[46] Yang G, Wang C, Lei H, Zheng X, Qin P, Xiong L, Zhao X, Yan Y, Fang G 2017 J. Mater. Chem. A 5 1658Google Scholar
[47] Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J 2014 Nano Lett. 14 3247Google Scholar
[48] Hou M, Zhang H, Wang Z, Xia Y, Chen Y, Huang W 2018 ACS Appl. Mater. Interfaces 10 30607Google Scholar
[49] You S, Wang H, Bi S, Zhou J, Qin L, Qiu X, Zhao Z, Xu Y, Zhang Y, Shi X, Zhou H, Tang Z 2018 Adv. Mater. 30 1706924Google Scholar
[50] Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. C 118 16651Google Scholar
[51] Shih Y C, Lan Y B, Li C S, Hsieh H C, Wang L, Wu C I, Lin K F 2017 Small 13 1604305
[52] Hou X, Zhou J, Huang S, Ou-Yang W, Pan L, Chen X 2017 Chem. Eng. J 330 947Google Scholar
[53] Hou X, Pan L, Huang S, Wei O Y, Chen X 2017 Electrochimica Acta 236 351Google Scholar
[54] Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 9815Google Scholar
[55] Jain S M, Qiu Z, Häggman L, Mirmohades M, Johansson M B, Edvinsson T, Boschloo G 2016 Energy Environ. Sci. 9 3770Google Scholar
[56] Song D, Wei D, Cui P, Li M, Duan Z, Wang T, Ji J, Li Y, Mbengue J M, Li Y, He Y, Trevor M, Park N-G 2016 J. Mater. Chem. A 4 6091Google Scholar
[57] Hayashi H, Lightcap I V, Tsujimoto M, Takano M, Umeyama T, Kamat P V, Imahori H 2011 J. Am. Chem. Soc. 133 7684Google Scholar
[58] Gomez De Arco L, Zhang Y, Schlenker C W, Ryu K, Thompson M E, Zhou C 2010 ACS Nano 4 2865Google Scholar
[59] Li W, Dong H, Guo X, Li N, Li J, Niu G, Wang L 2014 J. Mater. Chem. A 2 20105Google Scholar
[60] Luo H, Lin X, Hou X, Pan L, Huang S, Chen X 2017 Nanomicro Lett. 9 39
[61] Yang Z, Dou J, Wang M 2018 Solar RRL 2 1800177Google Scholar
[62] Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312Google Scholar
[63] Yao K, Wang X, Xu Y X, Li F 2015 Nano Energy 18 165Google Scholar
[64] Lin Y, Bai Y, Fang Y, Wang Q, Deng Y, Huang J 2017 ACS Energy Lett. 2 1571Google Scholar
[65] Li C, Lv X, Cao J, Tang Y 2019 Chin. J. Chem. 37 30
[66] Hou X, Huang S, Ou-Yang W, Pan L, Sun Z, Chen X 2017 ACS Appl. Mater. Interfaces 9 35200Google Scholar
-
图 3 (a) KCl钝化缺陷原理图[42]; (b)磺酸钾钝化缺陷示意图[45]; (c) APTES钝化缺陷原理图[46]; (d) DA钝化缺陷原理图[48]; (e) HS的结构式[49]; (f) HOCO-R-NH3+在界面处的结构[50]
Fig. 3. (a) Schematic diagram of KCl passivation defects[42]; (b) schematic diagram of potassium xanthate passivation defects[45]; (c) schematic diagram of APTES passivation PSCs interface defects[46]; (d) schematic diagram of DA passivation PSCs interface defects[48]; (e) diagram structure of HS[49]; (f) structure of HOCO-R-NH3+ at interface[50].
图 4 (a)钙钛矿表面电子陷阱的产生[54]; (b)吡啶缺陷钝化原理图[54]; (c)碘五氟苯与卤素阴离子之间卤素键作用的示意图[47]; (d) TPA掺杂钙钛矿器件的I-V曲线, 插图为TPA钝化原理图以及钙钛矿薄膜的SEM图[66]
Fig. 4. (a) Formation of perovskite surface traps[54]; (b) schematic diagram of pyridine passivation defects[54]; (c) schematic of the halogen bond interaction between the IPFB and halogen anion[47]; (d) I-V curves of TAP-doped perovskite devices, illustrated diagrams is TAP passivation schematic and SEM of perovskite films[66].
表 1 钝化和不钝化ETL/Perovskite界面钙钛矿太阳能电池的性能
Table 1. Performance of perovskite solar cells with and without passivation on ETL/Perovskite interface.
Interface to be modified Modifier Voc/V Jsc/mA·cm–2 FF PCE/% 文献 SnO2/MAPbIxCl3–x LiF W 1.15 21.62 0.73 18.33 [27] W/O 1.08 20.40 0.71 15.60 SnO2/MAPbIxCl3–x KCl W 1.12 21.82 0.79 19.44 [42] W/O 1.08 21.59 0.76 18.12 TiO2/MAPbIxCl3–x CsBr W 1.06 20.70 0.75 16.30 [44] W/O 0.99 18.70 0.69 13.10 SnO2/MAPbI3 Xanthate W 1.06 22.61 0.70 18.41 [45] W/O 1.03 21.74 0.73 16.56 SnO2/MAPbI3 APTES SAM W 1.06 20.84 0.66 14.69 [46] W/O 1.16 21.23 0.69 17.03 SnO2/MAPbI3 DA SAM W 1.05 21.80 0.73 16.87 [48] W/O 1.04 19.96 0.67 14.05 TiO2/MAPbI3 Li-TiO2 W 1.03 23.91 0.74 18.25 [52] W/O 1.01 22.46 0.69 15.64 TiO2/MAPbI3 HS W 1.11 23.34 0.77 20.10 [49] W/O 1.09 21.29 0.74 17.20 TiO2/MAPbI3 GABAH+I– W 1.00 19.20 0.62 12.00 [50] W/O — — — 8.00 TiO2/MAPbI3 LA W 0.99 22.40 0.64 14.22 [51] W/O 0.95 17.08 0.66 10.76 TiO2/MAPbI3 GnPs W 1.00 23.67 0.69 15.14 [41] W/O 0.97 22.33 0.80 19.23 表 2 钝化和不钝化Perovskite/HTL钙钛矿太阳能电池的性能
Table 2. Performance of perovskite solar cells with and without passivation on Perovskite/HTL interface.
Interface to be modified Modifier Voc/V Jsc/mA·cm–2 FF PCE/% 文献 MAPbIxCl3–x/Spiro-OMeTAD IPFB W 1.06 23.38 0.67 15.70 [47] W/O 1.02 23.80 0.57 13.00 MAPbI3/Spiro-OMeTAD GO W 1.03 20.00 0.72 14.50 [59] W/O 0.93 18.50 0.64 10.00 MAPbIxCl3–x/Spiro-OMeTAD Thiophene W 0.95 20.70 0.68 13.10 [54] W/O 1.02 21.30 0.68 15.30 MAPbIxCl3–x/Spiro-OMeTAD Pyridine W 0.95 20.70 0.68 13.10 [54] W/O 1.05 24.10 0.72 16.50 MAPbI3/Spiro-OMeTAD V-pyridine W 1.15 22.00 0.73 9.50 [55] W/O 0.80 19.20 0.63 18.50 MAPbI3/Spiro-OMeTAD F4TCNQ W 1.04 19.40 0.70 15.30 [56] W/O 1.06 20.30 0.75 18.10 MAPbI3/Spiro-OMeTAD ZnPc W 1.09 23.23 0.77 19.56 [65] W/O 1.08 22.93 0.76 18.83 MAPbI3/Spiro-OMeTAD TAP W 1.05 23.49 0.75 18.51 [66] W/O 0.99 22.09 0.71 15.53 -
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] NREL https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies.pdf [2019-03-31]
[3] Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, Tremolet de Villers B J, Sellinger A, Berry J J, Luther J M 2018 Nat. Energy 3 68Google Scholar
[4] Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T, Han L 2017 Adv. Mater. 29 1701073Google Scholar
[5] Lin Y, Bai Y, Fang Y, Chen Z, Yang S, Zheng X, Tang S, Liu Y, Zhao J, Huang J 2018 J. Phys. Chem. Lett. 9 654Google Scholar
[6] Ball J M, Petrozza A 2016 Nat. Energy 1 16149Google Scholar
[7] Meggiolaro D, Mosconi E, De Angelis F 2017 ACS Energy Lett. 2 2794Google Scholar
[8] Kieslich G, Sun S, Cheetham A K 2014 Chem. Sci. 5 4712Google Scholar
[9] Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G 2016 Chem. Sci. 7 4548Google Scholar
[10] Cai B, Xing Y, Yang Z, Zhang W H, Qiu J 2013 Energy Environ. Sci. 6 1480Google Scholar
[11] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar
[12] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[13] Chen B, Bai Y, Yu Z, Li T, Zheng X, Dong Q, Shen L, Boccard M, Gruverman A, Holman Z, Huang J 2016 Adv. Energy Mater. 6 1601128Google Scholar
[14] Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar
[15] Bush K A, Palmstrom A F, Yu Z J, et al. 2017 Nat. Energy 2 17009Google Scholar
[16] Li B, Ferguson V, Silva S R P, Zhang W 2018 Adv. Mater. Interfaces 5 1800326Google Scholar
[17] Liu N, Yam C 2018 Phys. Chem. Chem. Phys. 20 6800Google Scholar
[18] Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar
[19] Li W, Liu J, Bai F Q, Zhang H X, Prezhdo O V 2017 ACS Energy Lett. 2 1270Google Scholar
[20] Xiao Z, Yuan Y, Wang Q, Shao Y, Bai Y, Deng Y, Dong Q, Hu M, Bi C, Huang J 2016 Materials Science and Engineering R 101 1Google Scholar
[21] Sherkar T S, Momblona C, Gil-Escrig L, Ávila J, Sessolo M, Bolink H J, Koster L J A 2017 ACS Energy Lett. 2 1214Google Scholar
[22] Queisser H J, Haller E E 1998 Science 281 945Google Scholar
[23] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J 2014 Nat. Commun. 5 5784Google Scholar
[24] Collins J 2015 ECS J. Solid State Sci. Technol. 5 R3170
[25] Ran C, Xu J, Gao W, Huang C, Dou S 2018 Chem. Soc. Rev. 47 4581Google Scholar
[26] Conwell E, Weisskopf V F 1950 Phys. Rev. 77 388Google Scholar
[27] Yuan S, Wang J, Yang K, Wang P, Zhang X, Zhan Y, Zheng L 2018 Nanoscale 10 18909Google Scholar
[28] Hou Y, Chen W, Baran D, Stubhan T, Luechinger N A, Hartmeier B, Richter M, Min J, Chen S, Quiroz C O, Li N, Zhang H, Heumueller T, Matt G J, Osvet A, Forberich K, Zhang Z G, Li Y, Winter B, Schweizer P, Spiecker E, Brabec C J 2016 Adv. Mater. 28 5112Google Scholar
[29] Tress W, Marinova N, Inganäs O, Nazeeruddin M K, Zakeeruddin S M, Graetzel M 2015 Adv. Energy Mater. 5 1400812Google Scholar
[30] Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nat. Commun. 4 2242Google Scholar
[31] Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar
[32] Yoon H, Kang S M, Lee J K, Choi M 2016 Energy Environ. Sci. 9 2262Google Scholar
[33] Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumüller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690Google Scholar
[34] Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422Google Scholar
[35] Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar
[36] Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A 2017 Nat. Commun. 8 15218Google Scholar
[37] Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A 2015 Angew. Chem. Int. Edit. 54 8208Google Scholar
[38] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar
[39] Du M H 2015 J. Phys. Chem. Lett. 6 1461Google Scholar
[40] Jiang H, Jiang G, Xing W, Xiong W, Zhang X, Wang B, Zhang H, Zheng Y 2018 ACS Appl. Mater. Interfaces 10 29954Google Scholar
[41] Sidhik S, Panikar S S, Pérez C R, Luke T L, Carriles R, Carrera S C, de la Rosa E 2018 ACS Sustainable Chem. Eng. 6 15391Google Scholar
[42] Wang P, Wang J, Zhang X, Wang H, Cui X, Yuan S, Lu H, Tu L, Zhan Y, Zheng L 2018 J. Mater. Chem. A 6 15853Google Scholar
[43] Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar
[44] Li W, Zhang W, Van Reenen S, Sutton R J, Fan J, Haghighirad A A, Johnston M B, Wang L, Snaith H J 2016 Energy Environ. Sci. 9 490Google Scholar
[45] Wang Z, Kamarudin M A, Huey N C, Yang F, Pandey M, Kapil G, Ma T, Hayase S 2018 ChemSusChem 11 3941Google Scholar
[46] Yang G, Wang C, Lei H, Zheng X, Qin P, Xiong L, Zhao X, Yan Y, Fang G 2017 J. Mater. Chem. A 5 1658Google Scholar
[47] Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J 2014 Nano Lett. 14 3247Google Scholar
[48] Hou M, Zhang H, Wang Z, Xia Y, Chen Y, Huang W 2018 ACS Appl. Mater. Interfaces 10 30607Google Scholar
[49] You S, Wang H, Bi S, Zhou J, Qin L, Qiu X, Zhao Z, Xu Y, Zhang Y, Shi X, Zhou H, Tang Z 2018 Adv. Mater. 30 1706924Google Scholar
[50] Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. C 118 16651Google Scholar
[51] Shih Y C, Lan Y B, Li C S, Hsieh H C, Wang L, Wu C I, Lin K F 2017 Small 13 1604305
[52] Hou X, Zhou J, Huang S, Ou-Yang W, Pan L, Chen X 2017 Chem. Eng. J 330 947Google Scholar
[53] Hou X, Pan L, Huang S, Wei O Y, Chen X 2017 Electrochimica Acta 236 351Google Scholar
[54] Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 9815Google Scholar
[55] Jain S M, Qiu Z, Häggman L, Mirmohades M, Johansson M B, Edvinsson T, Boschloo G 2016 Energy Environ. Sci. 9 3770Google Scholar
[56] Song D, Wei D, Cui P, Li M, Duan Z, Wang T, Ji J, Li Y, Mbengue J M, Li Y, He Y, Trevor M, Park N-G 2016 J. Mater. Chem. A 4 6091Google Scholar
[57] Hayashi H, Lightcap I V, Tsujimoto M, Takano M, Umeyama T, Kamat P V, Imahori H 2011 J. Am. Chem. Soc. 133 7684Google Scholar
[58] Gomez De Arco L, Zhang Y, Schlenker C W, Ryu K, Thompson M E, Zhou C 2010 ACS Nano 4 2865Google Scholar
[59] Li W, Dong H, Guo X, Li N, Li J, Niu G, Wang L 2014 J. Mater. Chem. A 2 20105Google Scholar
[60] Luo H, Lin X, Hou X, Pan L, Huang S, Chen X 2017 Nanomicro Lett. 9 39
[61] Yang Z, Dou J, Wang M 2018 Solar RRL 2 1800177Google Scholar
[62] Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312Google Scholar
[63] Yao K, Wang X, Xu Y X, Li F 2015 Nano Energy 18 165Google Scholar
[64] Lin Y, Bai Y, Fang Y, Wang Q, Deng Y, Huang J 2017 ACS Energy Lett. 2 1571Google Scholar
[65] Li C, Lv X, Cao J, Tang Y 2019 Chin. J. Chem. 37 30
[66] Hou X, Huang S, Ou-Yang W, Pan L, Sun Z, Chen X 2017 ACS Appl. Mater. Interfaces 9 35200Google Scholar
计量
- 文章访问数: 22783
- PDF下载量: 677
- 被引次数: 0