-
柔性钙钛矿太阳能电池由于可弯曲、重量轻、高功质比等特点, 受到广泛关注. 提升柔性钙钛矿太阳能电池转换效率最有效的策略是钝化钙钛矿薄膜内部的晶界缺陷以及钝化钙钛矿薄膜与电荷传输层的界面缺陷. 本文设计制备了以柔性聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate, PET)为基材的柔性反式钙钛矿太阳能电池, 采用了辛基氯化胺(octadecylamine hydrochloride, OACl)添加剂及表面钝化的协同钝化策略, 提高了钙钛矿薄膜的结晶质量, 改善了钙钛矿薄膜内部及界面处的缺陷, 并最终得到了光电转换效率为20.80%的柔性反式钙钛矿太阳能电池. 本文为制备高效柔性钙钛矿太阳能电池提供了一种有效策略.Flexible perovskite solar cells have attracted much attention in the scientific community due to their lightweight nature, high flexibility, and superior power-to-mass ratio. One of the most effective strategies for enhancing the power conversion efficiency of these cells involves addressing grain boundary defects within the perovskite films and interfacial defects between the perovskite films and charge transport layers. In this work, we optimize the performance of inverted flexible perovskite solar cell by using octadecylamine hydrochloride (OACl) as both an additive and a surface passivating agent to achieve synergistic passivation to the bulk phase and surface. The incorporation of OACl in the perovskite precursor solution results in the enlarging of the perovskite crystal grains, enhancing crystallinity, and passivating of grain boundary defects within the perovskite film. This optimization leads the open-circuit voltage to increase from 1.07 to 1.12 V, fill factor from 70.86% to 75.04%, and power conversion efficiency from 18.08% to 20.12%. In addition, the OACl solution is used to passivate the surface of perovskite film, resulting in a smoother perovskite surface, fill the grain boundaries, and reduce the defect density on the perovskite surface. As a result, the optimized device exhibits an open-circuit voltage of 1.15 V, fill factor of 76.15%, and ultimately achieves a power conversion efficiency of 20.80% for flexible perovskite solar cells. The synergistic passivation strategy based on OACl used in this work provides an effective approach for fabricating efficient flexible perovskite solar cells.
-
Keywords:
- flexible /
- perovskite solar cell /
- invert /
- defect passivation
[1] Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar
[2] Jiang Q, Tong J, Xian Y, Kerner R A, Dunfield S P, Xiao C, Scheidt R A, Kuciauskas D, Wang X, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y, Zhu K 2022 Nature 611 278Google Scholar
[3] Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html.[2023-11-3]
[4] Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S F 2018 Nat. Commun. 9 3239Google Scholar
[5] Wu J, Chen P, Xu H, Yu M, Li L, Yan H, Huangfu Y, Xiao Y, Yang X, Zhao L, Wang W, Gong Q, Zhu R 2022 Sci. Chin. Mater. 65 2319Google Scholar
[6] Zhang J, Zhang W, Cheng H M, Silva S R P 2020 Mater. Today 39 66Google Scholar
[7] Chung J, Shin S S, Hwang K, Kim G, Kim K W, Lee D S, Kim W, Ma B S, Kim Y K, Kim T S, Seo J 2020 Energy Environ. Sci. 13 4854Google Scholar
[8] Cardinaletti I, Vangerven T, Nagels S, Cornelissen R, Schreurs D, Hruby J, Vodnik J, Devisscher D, Kesters J, D’Haen J, Franquet A, Spampinato V, Conard T, Maes W, Deferme W, Manca J V 2018 Sol. Energy Mater. Sol. Cells 182 121Google Scholar
[9] Wang H, Jiang X, Cao Y, Qian L, Liu Y, Huang M, Zhang C, Hao Y, Wang K, Liu S 2023 Adv. Energy Mater . 13 2202643Google Scholar
[10] Xie L, Du S, Li J, Liu C, Pu Z, Tong X, Liu J, Wang Y, Meng Y, Yang M, Li W, Ge Z 2023 Energy Environ. Sci. 16 5423Google Scholar
[11] Gong O Y, Han G S, Lee S, Seo M K, Sohn C, Yoon G W, Jang J, Lee J M, Choi J H, Lee D K, Kang S B, Choi M, Park N G, Kim D H, Jung H S 2022 ACS Energy Lett.
7 2893Google Scholar [12] Luo X, Lin X, Gao F, Zhao Y, Li X, Zhan L, Qiu Z, Wang J, Chen C, Meng L, Gao X, Zhang Y, Huang Z, Fan R, Liu H, Chen Y, Ren X, Tang J, Chen C H, Yang D, Tu Y, Liu X, Liu D, Zhao Q, You J, Fang J, Wu Y, Han H, Zhang X, Zhao D, Huang F, Zhou H, Yuan Y, Chen Q, Wang Z, Liu S F, Zhu R, Nakazaki J, Li Y, Han L 2022 Sci. Chin. Chem. 65 2369Google Scholar
[13] Ni Z, Bao C, Liu Y, Jiang Q, Wu W Q, Chen S, Dai X, Chen B, Hartweg B, Yu Z, Holman Z, Huang J 2020 Science 367 1352Google Scholar
[14] Li X, Zhang W, Wang Y C, Zhang W, Wang H Q, Fang J 2018 Nat. Commun. 9 3806Google Scholar
[15] Li X, Fu S, Liu S, Wu Y, Zhang W, Song W, Fang J 2019 Nano Energy 64 103962Google Scholar
[16] Zheng X, Hou Y, Bao C, Yin J, Yuan F, Huang Z, Song K, Liu J, Troughton J, Gasparini N, Zhou C, Lin Y, Xue D J, Chen B, Johnston A K, Wei N, Hedhili M N, Wei M, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M 2020 Nat. Energy 5 131Google Scholar
[17] Gharibzadeh S, Fassl P, Hossain I M, Rohrbeck P, Frericks M, Schmidt M, Duong T, Khan M R, Abzieher T, Nejand B A, Schackmar F, Almora O, Feeney T, Singh R, Fuchs D, Lemmer U, Hofmann J P, Weber S A L, Paetzold U W 2021 Energy Environ. Sci. 14 5875Google Scholar
[18] Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J 2019 Nature 571 245Google Scholar
[19] Chen S, Liu Y, Xiao X, Yu Z, Deng Y, Dai X, Ni Z, Huang J 2020 Joule 4 2661Google Scholar
[20] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar
[21] Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar
[22] Wu X, Xu G, Yang F, Chen W, Yang H, Shen Y, Wu Y, Chen H, Xi J, Tang X, Cheng Q, Chen Y, Ou X M, Li Y, Li Y 2023 ACS Energy Lett. 8 3750Google Scholar
[23] Cao Y, Feng J, Xu Z, Zhang L, Lou J, Liu Y, Ren X, Yang D, Liu S 2023 InfoMat 5 e12423Google Scholar
[24] Sun Q, Duan S, Liu G, Meng X, Hu D, Deng J, Shen B, Kang B, Silva S R P 2023 Adv. Energy Mater. 13 2301259Google Scholar
[25] Yang J, Sheng W, Li X, Zhong Y, Su Y, Tan L, Chen Y 2023 Adv. Funct. Mater. 33 2214984Google Scholar
[26] Xu R Y, Pan F, Chen J Y, Li J R, Yang Y G, Sun Y L, Zhu X Y, Li P Z, Cao X R, Xi J, Xu J, Yuan F, Dai J F, Zuo C T, Ding L M, Dong H, Jen A K Y, Wu Z X 2023 Adv. Mater. 36 2308039Google Scholar
[27] Yi Z, Li X, Xiao B, Jiang Q, Luo Y, Yang J 2023 Chem. Eng. J. 469 143790Google Scholar
[28] An Z, Zhu Y, Luo G, Hou P, Hu M, Li W, Huang F, Cheng Y B, Park H, Lu J 2023 Adv. Energy Mater. 13 2302732Google Scholar
[29] Dong Q, Chen M, Liu Y, Eickemeyer F T, Zhao W, Dai Z, Yin Y, Jiang C, Feng J, Jin S, Liu S, Zakeeruddin S M, Grätzel M, Padture N P, Shi Y 2021 Joule 5 1587Google Scholar
[30] Jiang X, Subhani W S, Wang K, Wang H, Duan L, Du M, Pang S, Liu S 2021 Adv. Mater. Interfaces 8 2001994Google Scholar
[31] Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci 12 308Google Scholar
[32] Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081Google Scholar
[33] He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J, Lin Z 2017 Nat. Commun. 8 16045Google Scholar
[34] Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar
[35] Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S 2018 Adv. Energy Mater. 8 1703246Google Scholar
-
图 1 钙钛矿薄膜的SEM图片 (a)空白钙钛矿薄膜; (b) OACl添加剂钝化的钙钛矿薄膜; (c) OACl添加剂及表面钝化的钙钛矿薄膜. (d) 钙钛矿薄膜晶粒尺寸数量分布柱状图
Fig. 1. SEM images of perovskite film: (a) Control perovskite film; (b) perovskite with OACl doping; (c) perovskite with OACl doping and interface modification. (d) Column chart of corresponding sizes counted by the SEM images.
表 1 空白钙钛矿薄膜, OACl添加剂钝化的钙钛矿薄膜, OACl添加剂及表面钝化钙钛矿薄膜的TRPL光谱拟合参数
Table 1. Fitted parameters of control perovskite film, perovskite with OACl doping, perovskite with OACl doping and interface modification from TRPL spectra.
T1/ns A1 T2/ns A2 Taverage/ns Control 54.23 95.56 354.90 222.11 336.35 With doping 163.20 212.90 473.90 150.93 372.34 With doping & interface 352.50 229.85 715.80 28.98 426.55 表 2 空白钙钛矿薄膜所制备的柔性电池, OACl添加剂钝化的钙钛矿薄膜所制备的柔性电池, OACl添加剂及表面钝化钙钛矿薄膜所制备的柔性电池的参数
Table 2. Photovoltaic parameters for control perovskite solar cells, perovskite solar cells with OACl doping, and perovskite solar cells with OACl doping and interface modification.
VOC/V JSC/(mA⋅cm–2) FF/% PCE/% Control Champion 1.07 23.86 70.86 18.08 Average 1.06 23.35 71.60 17.70 With doping Champion 1.12 23.84 75.04 20.12 Average 1.12 23.28 74.71 19.47 With doping & interface Champion 1.15 23.81 76.15 20.80 Average 1.13 23.56 75.14 20.07 -
[1] Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar
[2] Jiang Q, Tong J, Xian Y, Kerner R A, Dunfield S P, Xiao C, Scheidt R A, Kuciauskas D, Wang X, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y, Zhu K 2022 Nature 611 278Google Scholar
[3] Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html.[2023-11-3]
[4] Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S F 2018 Nat. Commun. 9 3239Google Scholar
[5] Wu J, Chen P, Xu H, Yu M, Li L, Yan H, Huangfu Y, Xiao Y, Yang X, Zhao L, Wang W, Gong Q, Zhu R 2022 Sci. Chin. Mater. 65 2319Google Scholar
[6] Zhang J, Zhang W, Cheng H M, Silva S R P 2020 Mater. Today 39 66Google Scholar
[7] Chung J, Shin S S, Hwang K, Kim G, Kim K W, Lee D S, Kim W, Ma B S, Kim Y K, Kim T S, Seo J 2020 Energy Environ. Sci. 13 4854Google Scholar
[8] Cardinaletti I, Vangerven T, Nagels S, Cornelissen R, Schreurs D, Hruby J, Vodnik J, Devisscher D, Kesters J, D’Haen J, Franquet A, Spampinato V, Conard T, Maes W, Deferme W, Manca J V 2018 Sol. Energy Mater. Sol. Cells 182 121Google Scholar
[9] Wang H, Jiang X, Cao Y, Qian L, Liu Y, Huang M, Zhang C, Hao Y, Wang K, Liu S 2023 Adv. Energy Mater . 13 2202643Google Scholar
[10] Xie L, Du S, Li J, Liu C, Pu Z, Tong X, Liu J, Wang Y, Meng Y, Yang M, Li W, Ge Z 2023 Energy Environ. Sci. 16 5423Google Scholar
[11] Gong O Y, Han G S, Lee S, Seo M K, Sohn C, Yoon G W, Jang J, Lee J M, Choi J H, Lee D K, Kang S B, Choi M, Park N G, Kim D H, Jung H S 2022 ACS Energy Lett.
7 2893Google Scholar [12] Luo X, Lin X, Gao F, Zhao Y, Li X, Zhan L, Qiu Z, Wang J, Chen C, Meng L, Gao X, Zhang Y, Huang Z, Fan R, Liu H, Chen Y, Ren X, Tang J, Chen C H, Yang D, Tu Y, Liu X, Liu D, Zhao Q, You J, Fang J, Wu Y, Han H, Zhang X, Zhao D, Huang F, Zhou H, Yuan Y, Chen Q, Wang Z, Liu S F, Zhu R, Nakazaki J, Li Y, Han L 2022 Sci. Chin. Chem. 65 2369Google Scholar
[13] Ni Z, Bao C, Liu Y, Jiang Q, Wu W Q, Chen S, Dai X, Chen B, Hartweg B, Yu Z, Holman Z, Huang J 2020 Science 367 1352Google Scholar
[14] Li X, Zhang W, Wang Y C, Zhang W, Wang H Q, Fang J 2018 Nat. Commun. 9 3806Google Scholar
[15] Li X, Fu S, Liu S, Wu Y, Zhang W, Song W, Fang J 2019 Nano Energy 64 103962Google Scholar
[16] Zheng X, Hou Y, Bao C, Yin J, Yuan F, Huang Z, Song K, Liu J, Troughton J, Gasparini N, Zhou C, Lin Y, Xue D J, Chen B, Johnston A K, Wei N, Hedhili M N, Wei M, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M 2020 Nat. Energy 5 131Google Scholar
[17] Gharibzadeh S, Fassl P, Hossain I M, Rohrbeck P, Frericks M, Schmidt M, Duong T, Khan M R, Abzieher T, Nejand B A, Schackmar F, Almora O, Feeney T, Singh R, Fuchs D, Lemmer U, Hofmann J P, Weber S A L, Paetzold U W 2021 Energy Environ. Sci. 14 5875Google Scholar
[18] Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J 2019 Nature 571 245Google Scholar
[19] Chen S, Liu Y, Xiao X, Yu Z, Deng Y, Dai X, Ni Z, Huang J 2020 Joule 4 2661Google Scholar
[20] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar
[21] Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar
[22] Wu X, Xu G, Yang F, Chen W, Yang H, Shen Y, Wu Y, Chen H, Xi J, Tang X, Cheng Q, Chen Y, Ou X M, Li Y, Li Y 2023 ACS Energy Lett. 8 3750Google Scholar
[23] Cao Y, Feng J, Xu Z, Zhang L, Lou J, Liu Y, Ren X, Yang D, Liu S 2023 InfoMat 5 e12423Google Scholar
[24] Sun Q, Duan S, Liu G, Meng X, Hu D, Deng J, Shen B, Kang B, Silva S R P 2023 Adv. Energy Mater. 13 2301259Google Scholar
[25] Yang J, Sheng W, Li X, Zhong Y, Su Y, Tan L, Chen Y 2023 Adv. Funct. Mater. 33 2214984Google Scholar
[26] Xu R Y, Pan F, Chen J Y, Li J R, Yang Y G, Sun Y L, Zhu X Y, Li P Z, Cao X R, Xi J, Xu J, Yuan F, Dai J F, Zuo C T, Ding L M, Dong H, Jen A K Y, Wu Z X 2023 Adv. Mater. 36 2308039Google Scholar
[27] Yi Z, Li X, Xiao B, Jiang Q, Luo Y, Yang J 2023 Chem. Eng. J. 469 143790Google Scholar
[28] An Z, Zhu Y, Luo G, Hou P, Hu M, Li W, Huang F, Cheng Y B, Park H, Lu J 2023 Adv. Energy Mater. 13 2302732Google Scholar
[29] Dong Q, Chen M, Liu Y, Eickemeyer F T, Zhao W, Dai Z, Yin Y, Jiang C, Feng J, Jin S, Liu S, Zakeeruddin S M, Grätzel M, Padture N P, Shi Y 2021 Joule 5 1587Google Scholar
[30] Jiang X, Subhani W S, Wang K, Wang H, Duan L, Du M, Pang S, Liu S 2021 Adv. Mater. Interfaces 8 2001994Google Scholar
[31] Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci 12 308Google Scholar
[32] Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081Google Scholar
[33] He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J, Lin Z 2017 Nat. Commun. 8 16045Google Scholar
[34] Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar
[35] Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S 2018 Adv. Energy Mater. 8 1703246Google Scholar
计量
- 文章访问数: 2936
- PDF下载量: 150
- 被引次数: 0