搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于协同钝化策略制备高性能柔性钙钛矿太阳能电池

王辉 郑德旭 姜箫 曹越先 杜敏永 王开 刘生忠 张春福

引用本文:
Citation:

基于协同钝化策略制备高性能柔性钙钛矿太阳能电池

王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福

Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy

Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu
PDF
HTML
导出引用
  • 柔性钙钛矿太阳能电池由于可弯曲、重量轻、高功质比等特点, 受到广泛关注. 提升柔性钙钛矿太阳能电池转换效率最有效的策略是钝化钙钛矿薄膜内部的晶界缺陷以及钝化钙钛矿薄膜与电荷传输层的界面缺陷. 本文设计制备了以柔性聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate, PET)为基材的柔性反式钙钛矿太阳能电池, 采用了辛基氯化胺(octadecylamine hydrochloride, OACl)添加剂及表面钝化的协同钝化策略, 提高了钙钛矿薄膜的结晶质量, 改善了钙钛矿薄膜内部及界面处的缺陷, 并最终得到了光电转换效率为20.80%的柔性反式钙钛矿太阳能电池. 本文为制备高效柔性钙钛矿太阳能电池提供了一种有效策略.
    Flexible perovskite solar cells have attracted much attention in the scientific community due to their lightweight nature, high flexibility, and superior power-to-mass ratio. One of the most effective strategies for enhancing the power conversion efficiency of these cells involves addressing grain boundary defects within the perovskite films and interfacial defects between the perovskite films and charge transport layers. In this work, we optimize the performance of inverted flexible perovskite solar cell by using octadecylamine hydrochloride (OACl) as both an additive and a surface passivating agent to achieve synergistic passivation to the bulk phase and surface. The incorporation of OACl in the perovskite precursor solution results in the enlarging of the perovskite crystal grains, enhancing crystallinity, and passivating of grain boundary defects within the perovskite film. This optimization leads the open-circuit voltage to increase from 1.07 to 1.12 V, fill factor from 70.86% to 75.04%, and power conversion efficiency from 18.08% to 20.12%. In addition, the OACl solution is used to passivate the surface of perovskite film, resulting in a smoother perovskite surface, fill the grain boundaries, and reduce the defect density on the perovskite surface. As a result, the optimized device exhibits an open-circuit voltage of 1.15 V, fill factor of 76.15%, and ultimately achieves a power conversion efficiency of 20.80% for flexible perovskite solar cells. The synergistic passivation strategy based on OACl used in this work provides an effective approach for fabricating efficient flexible perovskite solar cells.
      通信作者: 刘生忠, szliu@dicp.ac.cn ; 张春福, cfzhang@xidian.edu.cn
      Corresponding author: Liu Sheng-Zhong, szliu@dicp.ac.cn ; Zhang Chun-Fu, cfzhang@xidian.edu.cn
    [1]

    Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [2]

    Jiang Q, Tong J, Xian Y, Kerner R A, Dunfield S P, Xiao C, Scheidt R A, Kuciauskas D, Wang X, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y, Zhu K 2022 Nature 611 278Google Scholar

    [3]

    Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html.[2023-11-3]

    [4]

    Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S F 2018 Nat. Commun. 9 3239Google Scholar

    [5]

    Wu J, Chen P, Xu H, Yu M, Li L, Yan H, Huangfu Y, Xiao Y, Yang X, Zhao L, Wang W, Gong Q, Zhu R 2022 Sci. Chin. Mater. 65 2319Google Scholar

    [6]

    Zhang J, Zhang W, Cheng H M, Silva S R P 2020 Mater. Today 39 66Google Scholar

    [7]

    Chung J, Shin S S, Hwang K, Kim G, Kim K W, Lee D S, Kim W, Ma B S, Kim Y K, Kim T S, Seo J 2020 Energy Environ. Sci. 13 4854Google Scholar

    [8]

    Cardinaletti I, Vangerven T, Nagels S, Cornelissen R, Schreurs D, Hruby J, Vodnik J, Devisscher D, Kesters J, D’Haen J, Franquet A, Spampinato V, Conard T, Maes W, Deferme W, Manca J V 2018 Sol. Energy Mater. Sol. Cells 182 121Google Scholar

    [9]

    Wang H, Jiang X, Cao Y, Qian L, Liu Y, Huang M, Zhang C, Hao Y, Wang K, Liu S 2023 Adv. Energy Mater . 13 2202643Google Scholar

    [10]

    Xie L, Du S, Li J, Liu C, Pu Z, Tong X, Liu J, Wang Y, Meng Y, Yang M, Li W, Ge Z 2023 Energy Environ. Sci. 16 5423Google Scholar

    [11]

    Gong O Y, Han G S, Lee S, Seo M K, Sohn C, Yoon G W, Jang J, Lee J M, Choi J H, Lee D K, Kang S B, Choi M, Park N G, Kim D H, Jung H S 2022 ACS Energy Lett. 7 2893Google Scholar

    [12]

    Luo X, Lin X, Gao F, Zhao Y, Li X, Zhan L, Qiu Z, Wang J, Chen C, Meng L, Gao X, Zhang Y, Huang Z, Fan R, Liu H, Chen Y, Ren X, Tang J, Chen C H, Yang D, Tu Y, Liu X, Liu D, Zhao Q, You J, Fang J, Wu Y, Han H, Zhang X, Zhao D, Huang F, Zhou H, Yuan Y, Chen Q, Wang Z, Liu S F, Zhu R, Nakazaki J, Li Y, Han L 2022 Sci. Chin. Chem. 65 2369Google Scholar

    [13]

    Ni Z, Bao C, Liu Y, Jiang Q, Wu W Q, Chen S, Dai X, Chen B, Hartweg B, Yu Z, Holman Z, Huang J 2020 Science 367 1352Google Scholar

    [14]

    Li X, Zhang W, Wang Y C, Zhang W, Wang H Q, Fang J 2018 Nat. Commun. 9 3806Google Scholar

    [15]

    Li X, Fu S, Liu S, Wu Y, Zhang W, Song W, Fang J 2019 Nano Energy 64 103962Google Scholar

    [16]

    Zheng X, Hou Y, Bao C, Yin J, Yuan F, Huang Z, Song K, Liu J, Troughton J, Gasparini N, Zhou C, Lin Y, Xue D J, Chen B, Johnston A K, Wei N, Hedhili M N, Wei M, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M 2020 Nat. Energy 5 131Google Scholar

    [17]

    Gharibzadeh S, Fassl P, Hossain I M, Rohrbeck P, Frericks M, Schmidt M, Duong T, Khan M R, Abzieher T, Nejand B A, Schackmar F, Almora O, Feeney T, Singh R, Fuchs D, Lemmer U, Hofmann J P, Weber S A L, Paetzold U W 2021 Energy Environ. Sci. 14 5875Google Scholar

    [18]

    Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J 2019 Nature 571 245Google Scholar

    [19]

    Chen S, Liu Y, Xiao X, Yu Z, Deng Y, Dai X, Ni Z, Huang J 2020 Joule 4 2661Google Scholar

    [20]

    Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [21]

    Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar

    [22]

    Wu X, Xu G, Yang F, Chen W, Yang H, Shen Y, Wu Y, Chen H, Xi J, Tang X, Cheng Q, Chen Y, Ou X M, Li Y, Li Y 2023 ACS Energy Lett. 8 3750Google Scholar

    [23]

    Cao Y, Feng J, Xu Z, Zhang L, Lou J, Liu Y, Ren X, Yang D, Liu S 2023 InfoMat 5 e12423Google Scholar

    [24]

    Sun Q, Duan S, Liu G, Meng X, Hu D, Deng J, Shen B, Kang B, Silva S R P 2023 Adv. Energy Mater. 13 2301259Google Scholar

    [25]

    Yang J, Sheng W, Li X, Zhong Y, Su Y, Tan L, Chen Y 2023 Adv. Funct. Mater. 33 2214984Google Scholar

    [26]

    Xu R Y, Pan F, Chen J Y, Li J R, Yang Y G, Sun Y L, Zhu X Y, Li P Z, Cao X R, Xi J, Xu J, Yuan F, Dai J F, Zuo C T, Ding L M, Dong H, Jen A K Y, Wu Z X 2023 Adv. Mater. 36 2308039Google Scholar

    [27]

    Yi Z, Li X, Xiao B, Jiang Q, Luo Y, Yang J 2023 Chem. Eng. J. 469 143790Google Scholar

    [28]

    An Z, Zhu Y, Luo G, Hou P, Hu M, Li W, Huang F, Cheng Y B, Park H, Lu J 2023 Adv. Energy Mater. 13 2302732Google Scholar

    [29]

    Dong Q, Chen M, Liu Y, Eickemeyer F T, Zhao W, Dai Z, Yin Y, Jiang C, Feng J, Jin S, Liu S, Zakeeruddin S M, Grätzel M, Padture N P, Shi Y 2021 Joule 5 1587Google Scholar

    [30]

    Jiang X, Subhani W S, Wang K, Wang H, Duan L, Du M, Pang S, Liu S 2021 Adv. Mater. Interfaces 8 2001994Google Scholar

    [31]

    Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci 12 308Google Scholar

    [32]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081Google Scholar

    [33]

    He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J, Lin Z 2017 Nat. Commun. 8 16045Google Scholar

    [34]

    Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar

    [35]

    Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S 2018 Adv. Energy Mater. 8 1703246Google Scholar

  • 图 1  钙钛矿薄膜的SEM图片 (a)空白钙钛矿薄膜; (b) OACl添加剂钝化的钙钛矿薄膜; (c) OACl添加剂及表面钝化的钙钛矿薄膜. (d) 钙钛矿薄膜晶粒尺寸数量分布柱状图

    Fig. 1.  SEM images of perovskite film: (a) Control perovskite film; (b) perovskite with OACl doping; (c) perovskite with OACl doping and interface modification. (d) Column chart of corresponding sizes counted by the SEM images.

    图 2  钙钛矿薄膜AFM图片 (a) 空白钙钛矿薄膜; (b) OACl添加剂钝化的钙钛矿薄膜; (c) OACl添加剂及表面钝化的钙钛矿薄膜

    Fig. 2.  AFM images of perovskite film: (a) Control perovskite film; (b) perovskite with OACl doping; (c) perovskite with OACl doping and interface modification.

    图 3  钙钛矿薄膜的XRD图谱

    Fig. 3.  XRD patterns of perovskite film.

    图 4  对不同的钙钛矿薄膜表征 (a) PL图谱; (b) TRPL图谱

    Fig. 4.  Different perovskite films were characterized: (a) PL results; (b) TRPL results.

    图 5  钙钛矿薄膜的SCLC图谱

    Fig. 5.  SCLC results for perovskite film.

    图 6  钙钛矿薄膜制备的柔性电池的J-V曲线图

    Fig. 6.  J-V curves for solar cells prepared by perovskite films.

    图 7  钙钛矿薄膜制备的柔性电池的莫特-肖特基电化学曲线

    Fig. 7.  Mott-Schottky electrochemical curves of flexible cells prepared by perovskite films.

    表 1  空白钙钛矿薄膜, OACl添加剂钝化的钙钛矿薄膜, OACl添加剂及表面钝化钙钛矿薄膜的TRPL光谱拟合参数

    Table 1.  Fitted parameters of control perovskite film, perovskite with OACl doping, perovskite with OACl doping and interface modification from TRPL spectra.

    T1/ns A1 T2/ns A2 Taverage/ns
    Control 54.23 95.56 354.90 222.11 336.35
    With doping 163.20 212.90 473.90 150.93 372.34
    With doping & interface 352.50 229.85 715.80 28.98 426.55
    下载: 导出CSV

    表 2  空白钙钛矿薄膜所制备的柔性电池, OACl添加剂钝化的钙钛矿薄膜所制备的柔性电池, OACl添加剂及表面钝化钙钛矿薄膜所制备的柔性电池的参数

    Table 2.  Photovoltaic parameters for control perovskite solar cells, perovskite solar cells with OACl doping, and perovskite solar cells with OACl doping and interface modification.

    VOC/V JSC/(mA⋅cm–2) FF/% PCE/%
    Control Champion 1.07 23.86 70.86 18.08
    Average 1.06 23.35 71.60 17.70
    With doping Champion 1.12 23.84 75.04 20.12
    Average 1.12 23.28 74.71 19.47
    With doping & interface Champion 1.15 23.81 76.15 20.80
    Average 1.13 23.56 75.14 20.07
    下载: 导出CSV
  • [1]

    Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [2]

    Jiang Q, Tong J, Xian Y, Kerner R A, Dunfield S P, Xiao C, Scheidt R A, Kuciauskas D, Wang X, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y, Zhu K 2022 Nature 611 278Google Scholar

    [3]

    Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html.[2023-11-3]

    [4]

    Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S F 2018 Nat. Commun. 9 3239Google Scholar

    [5]

    Wu J, Chen P, Xu H, Yu M, Li L, Yan H, Huangfu Y, Xiao Y, Yang X, Zhao L, Wang W, Gong Q, Zhu R 2022 Sci. Chin. Mater. 65 2319Google Scholar

    [6]

    Zhang J, Zhang W, Cheng H M, Silva S R P 2020 Mater. Today 39 66Google Scholar

    [7]

    Chung J, Shin S S, Hwang K, Kim G, Kim K W, Lee D S, Kim W, Ma B S, Kim Y K, Kim T S, Seo J 2020 Energy Environ. Sci. 13 4854Google Scholar

    [8]

    Cardinaletti I, Vangerven T, Nagels S, Cornelissen R, Schreurs D, Hruby J, Vodnik J, Devisscher D, Kesters J, D’Haen J, Franquet A, Spampinato V, Conard T, Maes W, Deferme W, Manca J V 2018 Sol. Energy Mater. Sol. Cells 182 121Google Scholar

    [9]

    Wang H, Jiang X, Cao Y, Qian L, Liu Y, Huang M, Zhang C, Hao Y, Wang K, Liu S 2023 Adv. Energy Mater . 13 2202643Google Scholar

    [10]

    Xie L, Du S, Li J, Liu C, Pu Z, Tong X, Liu J, Wang Y, Meng Y, Yang M, Li W, Ge Z 2023 Energy Environ. Sci. 16 5423Google Scholar

    [11]

    Gong O Y, Han G S, Lee S, Seo M K, Sohn C, Yoon G W, Jang J, Lee J M, Choi J H, Lee D K, Kang S B, Choi M, Park N G, Kim D H, Jung H S 2022 ACS Energy Lett. 7 2893Google Scholar

    [12]

    Luo X, Lin X, Gao F, Zhao Y, Li X, Zhan L, Qiu Z, Wang J, Chen C, Meng L, Gao X, Zhang Y, Huang Z, Fan R, Liu H, Chen Y, Ren X, Tang J, Chen C H, Yang D, Tu Y, Liu X, Liu D, Zhao Q, You J, Fang J, Wu Y, Han H, Zhang X, Zhao D, Huang F, Zhou H, Yuan Y, Chen Q, Wang Z, Liu S F, Zhu R, Nakazaki J, Li Y, Han L 2022 Sci. Chin. Chem. 65 2369Google Scholar

    [13]

    Ni Z, Bao C, Liu Y, Jiang Q, Wu W Q, Chen S, Dai X, Chen B, Hartweg B, Yu Z, Holman Z, Huang J 2020 Science 367 1352Google Scholar

    [14]

    Li X, Zhang W, Wang Y C, Zhang W, Wang H Q, Fang J 2018 Nat. Commun. 9 3806Google Scholar

    [15]

    Li X, Fu S, Liu S, Wu Y, Zhang W, Song W, Fang J 2019 Nano Energy 64 103962Google Scholar

    [16]

    Zheng X, Hou Y, Bao C, Yin J, Yuan F, Huang Z, Song K, Liu J, Troughton J, Gasparini N, Zhou C, Lin Y, Xue D J, Chen B, Johnston A K, Wei N, Hedhili M N, Wei M, Alsalloum A Y, Maity P, Turedi B, Yang C, Baran D, Anthopoulos T D, Han Y, Lu Z H, Mohammed O F, Gao F, Sargent E H, Bakr O M 2020 Nat. Energy 5 131Google Scholar

    [17]

    Gharibzadeh S, Fassl P, Hossain I M, Rohrbeck P, Frericks M, Schmidt M, Duong T, Khan M R, Abzieher T, Nejand B A, Schackmar F, Almora O, Feeney T, Singh R, Fuchs D, Lemmer U, Hofmann J P, Weber S A L, Paetzold U W 2021 Energy Environ. Sci. 14 5875Google Scholar

    [18]

    Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J 2019 Nature 571 245Google Scholar

    [19]

    Chen S, Liu Y, Xiao X, Yu Z, Deng Y, Dai X, Ni Z, Huang J 2020 Joule 4 2661Google Scholar

    [20]

    Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [21]

    Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar

    [22]

    Wu X, Xu G, Yang F, Chen W, Yang H, Shen Y, Wu Y, Chen H, Xi J, Tang X, Cheng Q, Chen Y, Ou X M, Li Y, Li Y 2023 ACS Energy Lett. 8 3750Google Scholar

    [23]

    Cao Y, Feng J, Xu Z, Zhang L, Lou J, Liu Y, Ren X, Yang D, Liu S 2023 InfoMat 5 e12423Google Scholar

    [24]

    Sun Q, Duan S, Liu G, Meng X, Hu D, Deng J, Shen B, Kang B, Silva S R P 2023 Adv. Energy Mater. 13 2301259Google Scholar

    [25]

    Yang J, Sheng W, Li X, Zhong Y, Su Y, Tan L, Chen Y 2023 Adv. Funct. Mater. 33 2214984Google Scholar

    [26]

    Xu R Y, Pan F, Chen J Y, Li J R, Yang Y G, Sun Y L, Zhu X Y, Li P Z, Cao X R, Xi J, Xu J, Yuan F, Dai J F, Zuo C T, Ding L M, Dong H, Jen A K Y, Wu Z X 2023 Adv. Mater. 36 2308039Google Scholar

    [27]

    Yi Z, Li X, Xiao B, Jiang Q, Luo Y, Yang J 2023 Chem. Eng. J. 469 143790Google Scholar

    [28]

    An Z, Zhu Y, Luo G, Hou P, Hu M, Li W, Huang F, Cheng Y B, Park H, Lu J 2023 Adv. Energy Mater. 13 2302732Google Scholar

    [29]

    Dong Q, Chen M, Liu Y, Eickemeyer F T, Zhao W, Dai Z, Yin Y, Jiang C, Feng J, Jin S, Liu S, Zakeeruddin S M, Grätzel M, Padture N P, Shi Y 2021 Joule 5 1587Google Scholar

    [30]

    Jiang X, Subhani W S, Wang K, Wang H, Duan L, Du M, Pang S, Liu S 2021 Adv. Mater. Interfaces 8 2001994Google Scholar

    [31]

    Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci 12 308Google Scholar

    [32]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081Google Scholar

    [33]

    He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J, Lin Z 2017 Nat. Commun. 8 16045Google Scholar

    [34]

    Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar

    [35]

    Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S 2018 Adv. Energy Mater. 8 1703246Google Scholar

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [3] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [4] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [5] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [6] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [7] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [8] 刘钰雪, 明逸东, 吴聪聪. 氯掺杂甲胺基钙钛矿电池的性能及其改进. 物理学报, 2022, 71(20): 207303. doi: 10.7498/aps.71.20220966
    [9] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [10] 高九林, 连亚军, 杨晔, 李国庆, 杨晓晖. 采用硫氰酸铵添加剂的高效天蓝色钙钛矿发光二极管. 物理学报, 2021, 70(19): 198502. doi: 10.7498/aps.70.20211046
    [11] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [12] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [13] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [14] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
计量
  • 文章访问数:  604
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-23
  • 修回日期:  2023-12-29
  • 上网日期:  2024-01-13
  • 刊出日期:  2024-04-05

/

返回文章
返回