-
基于钙钛矿太阳能电池材料独特的光电特性, 特别是光电转换效率在初期短时间内的快速提升, 使其成为当前光伏领域中最富吸引力的光吸收材料之一. 然而, 近年来转换效率的增长步入缓慢阶段, 同时材料的长期稳定性也成为商业化应用的关键挑战, 这些问题背后的物理机制与材料缺陷密切相关. 为进一步提高电池效率和结构稳定性, 必须深刻理解和精准地掌握这些缺陷的特性. 本文全面回顾了钙钛矿材料中各类缺陷对光伏性能和稳定性的影响, 包括传统刚性模型缺陷、非常规性缺陷、复合型缺陷、离子迁移和缺陷对载流子寿命的影响, 论述了缺陷与材料结构稳定性之间的紧密关联性, 并对未来关于缺陷的研究方向进行了展望.Perovskite solar cell material becomes one of the most attractive light absorbing materials in the photovolatic field due toits unique photoelectric characteristics, especially the rapid improvement of photoelectric conversion efficiency in the initial short period of time. However, in recent years, the growth of conversion efficiency has entered a slow stage, posing a challenge for subsequent development. In addition, the long-time stability of material has become a key barrier to widespread commerical applications. The emergence of these problems is closely related to the inevitable defects in the material in preparation process, because defect is usually regarded as one of the key factors hindering the improvement of photovolatic performance and materical stability. Therefore, a comprehensive understanding of the inherent defects of material is essential to improve cell efficiency and maintain long-time structural stability. In this paper, the effects of defects in perovskite material on photovolatic performance and stability are discussed in many aspects, including the traditional rigid defects, unconventional defects, complex defects, and ion migration. Second, this work also delves into how defects affect carrier lifetime and highlights their role in determining the overall cell performance. Such insights are very important in designing effective strategies to mitigate the adverse effects of defects on material performance and stability. Finally, we discuss the complex relationship between defects and structural stability, and recognize that the defects are a key factor affecting the long-term robustness of perovskite solar cells. The understanding of the mechanism behind the focus problems will help researchers achieve new ideas to improve the efficiency and duraibility of perovskite solar cell technology. Overall, this review not only provides the current state of knowledge on defects in perovskite materials, but also illustrates further research directions. By revealing the complex interplay between defects, photovoltaic performance and structural stability, researchers can find a way to break through the current limitations and realize the potential value of perovskite solar cell technology in the commercial applications. Thiswork aims to spark an in-depth discussion of this issue and further explore and innovate in this promising field.
-
Keywords:
- perovskite solar cells /
- defects /
- non-radiative recombination /
- stability
[1] Yin W J, Yan Y, Wei S H 2014 J. Phys. Chem. Lett. 5 3625Google Scholar
[2] Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar
[3] Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar
[4] Zhang X, Turiansky M E, Van de Walle C G 2020 J. Phys. Chem. C 124 6022Google Scholar
[5] Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar
[6] Wang Z, Gan J, Liu X, Shi H, Wei Q, Zeng Q, Qiao L, Zheng Y 2020 J. Power Sources 454 227913Google Scholar
[7] Turedi B, Lintangpradipto M N, Sandberg O J, Yazmaciyan A, Matt G J, Alsalloum A Y, Almasabi K, Sakhatskyi K, Yakunin S, Zheng X, Naphade R, Nematulloev S, Yeddu V, Baran D, Armin A, Saidaminov M I, Kovalenko M V, Mohammed O F, Bakr O M 2022 Adv. Mater. 34 e2202390Google Scholar
[8] Zhang F, Yang B, Mao X, Yang R, Jiang L, Li Y, Xiong J, Yang Y, He R, Deng W, Han K 2017 ACS Appl. Mater. Interfaces 9 14827Google Scholar
[9] NPEL Best Research-Cell Efficiency Chart (https://www.nrel.gov/pv/cell-efficiency.html
[10] Wolff C M, Caprioglio P, Stolterfoht M, Neher D 2019 Adv. Mater. 31 1902762Google Scholar
[11] Saidaminov M I, Kim J, Jain A, Quintero-Bermudez R, Tan H, Long G, Tan F, Johnston A, Zhao Y, Voznyy O, Sargent E H 2018 Nat. Energy 3 648Google Scholar
[12] Huang J, Yuan Y, Shao Y, Yan Y 2017 Nat. Rev. Mater. 2 17042Google Scholar
[13] Rühle S 2016 Sol. Energy 130 139Google Scholar
[14] Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar
[15] Hall R N 1952 Phys. Rev. 87 387
[16] Chu W, Zheng Q, Prezhdo O V, Zhao J, Saidi W A 2020 Sci. Adv. 6 eaaw7453Google Scholar
[17] Goldschmidt V M 1926 Naturwissenschaften 14 477Google Scholar
[18] Yin W J, Yang J H, Kang J, Yan Y, Wei S H 2015 J. Mater. Chem. A 3 8926Google Scholar
[19] Perdew J P, Burke K, Ernzerhof M J 1996 Phys. Rev. Lett. 77 3865Google Scholar
[20] Huang H, Bodnarchuk M I, Kershaw S V, Kovalenko M V, Rogach A L 2017 ACS Energy Lett. 2 2071Google Scholar
[21] Xiao Z, Yan Y 2017 Adv. Energy Mater. 7 1701136Google Scholar
[22] Xue J, Wang R, Yang Y 2020 Nat. Rev. Mater. 5 809Google Scholar
[23] Wei S H 2004 Comput. Mater. Sci. 30 337Google Scholar
[24] Ming W, Yang D, Li T, Zhang L, Du M H 2018 Adv. Sci. 5 1700662Google Scholar
[25] Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281Google Scholar
[26] Akimov A V, Prezhdo O V 2013 J. Chem. Theory Comput. 9 4959Google Scholar
[27] Akimov A V, Prezhdo O V 2014 J. Chem. Theory Comput. 10 789Google Scholar
[28] Zheng Q, Chu W, Zhao C, Zhang L, Guo H, Wang Y, Jiang X, Zhao J 2019 Wires Comput. Mol. Sci. 9 e1411Google Scholar
[29] Meng S, Kaxiras E 2008 J. Chem. Phys. 129 054110Google Scholar
[30] Lian C, Hu S Q, Guan M X, Meng S 2018 J. Chem. Phys. 149 154104Google Scholar
[31] Madjet M E A, Akimov A V, El-Mellouhi F, Berdiyorov G R, Ashhab S, Tabeta N, Kaisac S 2016 Phys. Chem. Chem. Phys. 18 5219Google Scholar
[32] Li J, Zhu H F, Zhang Y Y, Yuan Z K, Chen S, Gong X G 2017 Phys. Rev. B 96 104103Google Scholar
[33] Shi L, Xu K, Wang L W 2015 Phys. Rev. B 91 205315Google Scholar
[34] Ni Z, Bao C, Liu Y, Jiang Q, Wu W Q, Chen S, Dai X, Chen B, Hartweg B, Yu Z, Holman Z, Huang J S 2020 Science 367 1352Google Scholar
[35] Yin W J, Shi T, Yan Y 2015 J. Phys. Chem. C 119 5253Google Scholar
[36] Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y, Huang J 2014 Appl. Phys. Lett. 105 163508Google Scholar
[37] Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570Google Scholar
[38] Wang J, Li W, Yin W J 2020 Adv. Mater. 32 e1906115Google Scholar
[39] Meggiolaro D, De Angelis F 2018 ACS Energy Lett. 3 2206Google Scholar
[40] Zhang X, Shen J X, Turiansky M E, Van de Walle C G 2021 Nat. Mater. 20 971Google Scholar
[41] Kang J 2020 Phys. Rev. Mater. 4 085405Google Scholar
[42] Wang J, Duan X, Yin W J 2021 J. Phys. Chem. Lett. 12 9328Google Scholar
[43] Buin A, Comin R, Xu J, Ip A H, Sargent E H 2015 Chem. Mater. 27 4405Google Scholar
[44] Eames C, Frost J M, Barnes P R, O'Regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar
[45] Haruyama J, Sodeyama K, Han L, Tateyama Y 2015 J. Am. Chem. Soc. 137 10048Google Scholar
[46] Azpiroz J M, Mosconi E, Bisquert J, De Angelis F 2015 Energy Environ. Sci. 8 2118Google Scholar
[47] Zhang X, Turiansky M E, Shen J X, Van de Walle C G 2020 Phys. Rev. B 101 140101Google Scholar
[48] Li W, Liu J, Bai F Q, Zhang H X, Prezhdo O V 2017 ACS Energy Lett. 2 1270Google Scholar
[49] He J, Fang W H, Long R 2019 Chem. Sci. 10 10079Google Scholar
[50] Tong C J, Li L, Liu L M, Prezhdo O V 2020 J. Am. Chem. Soc. 142 3060Google Scholar
[51] Tsai H, Asadpour R, Blancon J C, Stoumpos C C, Durand O, Strzalka J W, Chen B, Verduzco R, Ajayan P M, Tretiak S 2018 Science 360 67Google Scholar
[52] Wu X, Ma J, Qin M, Guo X, Li Y, Qin Z, Xu J, Lu X 2021 Adv. Funct. Mater. 31 2101287Google Scholar
[53] Cai B, Yang X, Yu Z, Liang Y, Shan Y, Hagfeldt A, Sun L 2020 J. Power Sources 472 228506Google Scholar
[54] Nie W, Blancon J C, Neukirch A J, Appavoo K, Tsai H, Chhowalla M, Alam M A, Sfeir M Y, Katan C, Even J, Tretiak S, Crochet J J, Gupta G, Mohite A D 2016 Nat. Commun. 7 11574Google Scholar
[55] Vasilev A A, Saranin D S, Gostishchev P A, Didenko S I, Polyakov A Y, Di Carlo A 2022 Opt. Mater. : X 16 100218
[56] Nan G, Zhang X, Lu G 2019 J. Phys. Chem. Lett. 10 7774Google Scholar
[57] Wang J, Yin W J 2023 Metal-Halide Perovskite Semiconductors: From Physical Properties to Opto-electronic Devices and X-ray Sensors (Springer) pp239–263
[58] Chen G Y, Guo Z D, Gong X G, Yin W J 2022 Chem 8 3120Google Scholar
[59] Ma J P, Yin J, Chen Y M, Zhao Q, Zhou Y, Li H, Kuroiwa Y, Moriyoshi C, Li Z Y, Bakr O M, Mohammed O F, Sun H T 2019 ACS Mater. Lett. 1 185Google Scholar
[60] Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A 2017 Nat. Commun. 8 15218Google Scholar
[61] Hidalgo J, Kaiser W, An Y, Li P, Oh Z, Castro-Méndez A F, LaFollette D K, Kim S, Lai B, Breternitz J, Schoor S, Perini C A R, Mosconi E, Angelis F D, Correa-Baena J P 2023 J. Am. Chem. Soc. 145 24549
[62] Chen S, Wu C, Han B, Liu Z, Mi Z, Hao W, Zhao J, Wang X, Zhang Q, Liu K, Qi J, Cao J, Feng J, Yu D, Li J, Gao P 2021 Nat. Commun. 12 5516
[63] Tan S, Yavuz I, Weber M H, Huang T, Chen C H, Wang R, Wang H C, Ko J H, Nuryyeva S, Xue J, Zhao Y, Wei K H, Lee J W, Yang Y 2020 Joule 4 2426Google Scholar
-
图 1 (a)—(d) MAPbI3的原子结构[18], 其中(a) α相, (b) β相, (c) γ相, (d) δ相; (e)四种相体系的能带结构[18]; (f) 态密度[18]; (g) APbI3结构中带边耦合的简化图[20]; (h), (i) CBM和VBM的部分电荷密度图[3]; (j) 太阳能电池的光电转换过程
Fig. 1. (a)–(d) Atomic structures of MAPbI3[18]: (a) α phase; (b) β phase; (c) γ phase; (d) δ phase. (e) Band structures of the four phase systems[18]; (f) density of states[18]; (g) simplified depiction of the bonding in APbI3[20]; (h), (i) the partial charge density at CBM and VBM, respectively[3]; (j) photoelectric conversion process of solar cells.
图 3 (a) 计算MAPbI3材料在平衡生长下的热动力学范围[3]; (b)—(d) 对应的是图(a)中三个化学势(A, B和C点)的缺陷形成能[3]; (e) 本征缺陷的电荷转变能级[2]; (f), (g) 分别描述的是由阴/阳离子空位和阳离子-阳离子/阴离子-阴离子的错位键所形成缺陷态的示意图[35]
Fig. 3. (a) Calculate the thermodynamics range of MAPbI3 under the equilibrium growth[3]; (b)–(d) are respectively the defect formation energies under the three chemical potentials (A, B and C points) in panel (a)[3]; (e) charge transition energy levels of intrinsic defects[2]; (f), (g) the schematic diagrams of defect states caused by negative/cation vacancy and cation-cation/anion-anion wrong bonds, respectively[35]
图 4 (a) VI形成Pb-dimer前后的局域缺陷构型及其能带结构的变化[37]; (b) IMA形成I-trimer构型前后能带结构的变化, 插图表示缺陷态的局域电荷密度图[37]; (c) 计算VI, Pbi, PbMA和IMA在不同电荷态下的缺陷形成能随费米能级的变化[37]; (d) VI形成深能级缺陷态的机理示意图[38]; (e) 可能稳定的Ii和VPb缺陷结构, 以及电荷转变能级[39]; (f) 反位缺陷PbI两种可能的缺陷构型, 即面内桥位(顶图)和面间桥位(底图)[25]; (g) β-MAPbI3中的关键缺陷形成能和单位体积内的缺陷浓度[25]; (h) 分别计算在贫氢和富氢环境下, VH(N)和VH(C)的形成能随费米能级的变化[40]
Fig. 4. (a) Local defect configurations and band structures change before and after the formation of a Pb-dimer for VI[37]; (b) the band structures change before and after the formation of a I-trimer for IMA, where the illustrations indicate the local charge density of the defect state[37]; (c) calculate the defect formation energy of VI, Pbi, PbMA and IMA with Fermi level in different charge states[37]; (d) schematic diagram of the mechanism of VI forming deep-level defect states[38]; (e) potentially stable Ii and VPb defect structures, as well as the charge transition levels[39]; (f) there are two possible defect configurations of PbI: in-plane bridge (top) and interplane bridge (bottom) [25]; (g) formation energies and volume densities of key defects in β-MAPbI3[25]; (h) the formation energy of VH(N) and VH(C) with Fermi level under hydrogen-poor and -rich conditions, respectively[40].
图 5 (a) 不同泛函对Ii和Pbi的缺陷构型和能量的影响[39]; (b) PBE和PBE-SOC对带边能级(包括VBM, CBM和局域缺陷态DLS)和$ {{\mathrm{V}}}_{{\mathrm{B}}{\mathrm{r}}}^{0} $附近Pb-Pb距离的影响[41]; (c) IPb的局域缺陷构型(刚性、BI和TI模型), 以及得失电子时之间的转换过程[42]; (d) 刚性模型IPb缺陷的PDOS图[42]; (e) 稳态缺陷($ {{\mathrm{I}}}_{{\mathrm{P}}{\mathrm{b}}}^{0} $和$ {{\mathrm{I}}}_{{\mathrm{P}}{\mathrm{b}}}^{-3} $)的电子结构[42]
Fig. 5. (a) Influence of different functional on defect configurations and energies of Ii and Pbi[39]; (b) the influence of PBE and PBE-SOC on the energy levels (including VBM, CBM and defect-localized state DLS) and Pb-Pb distance near $ {{\mathrm{V}}}_{{\mathrm{B}}{\mathrm{r}}}^{0} $[41]; (c) the local defect configuration of IPb (rigid, BI and TI models) and their transitions via electron gains and losses[42]; (d) projected density of states (PDOS) for the rigid model defect IPb[42]; (e) electronic structures of the steady-state defects ($ {{\mathrm{I}}}_{{\mathrm{P}}{\mathrm{b}}}^{0} $ and $ {{\mathrm{I}}}_{{\mathrm{P}}{\mathrm{b}}}^{-3} $) [42].
图 6 (a) $ {{\mathrm{I}}}^{-} $, $ {{\mathrm{P}}{\mathrm{b}}}^{+2} $和$ {{\mathrm{M}}{\mathrm{A}}}^{+} $离子的迁移机理[44]; (b) VI和VMA迁移路径的能量分布, 插图显示了NEB方法在初始、过渡和最终状态下的结构图像[45]; (c) 四种常见缺陷(VI, VMA, VPb和Ii)的迁移路径[46]; (d)—(g)概述缺陷迁移及其对钙钛矿电池操作机理的影响[46]
Fig. 6. (a) Diffusion mechanism of $ {{\mathrm{I}}}^{-} $, $ {{\mathrm{P}}{\mathrm{b}}}^{+2} $ and $ {{\mathrm{M}}{\mathrm{A}}}^{+} $ ions[44]; (b) energy profiles of VI and VMA migration path, where the insets show the defect structures of the NEB images at the initial, transition, and final states[45]; (c) migration paths of four common defects (VI, VMA, VPb, and Ii) [46]; (d)–(g) an overview of defect migrations and their impact on the operational mechanisms of perovskite cells[46].
图 7 (a) Ii缺陷的局域原子结构, 以及非辐射捕获系数和复合系数A与温度之间的关系[47]; (b), (c) 分别代表不同缺陷和原始MAPbI3的原子投影DOS, 以及不同体系在2 ns后的电子-空穴复合百分比. 其中, 蓝色和绿色分别表示直接复合与缺陷辅助复合的百分比[16]; (d) 不同价态Ii和原始MAPbI3中电荷捕获与关键态载流子的种群演变过程[49]; (e) 在不同温度和转变能级下PbI的空穴捕获率(左)和电子捕获率(右)[32]; (f) PbI的非辐射捕获系数随温度的变化[4]; (g) 碘离子迁移过程与激发态载流子寿命的联系, 插图为碘离子的迁移路径[50]
Fig. 7. (a) Local atomic structures of Ii defects, and the relationship of the non-radiative capture coefficients and recombination coefficient A to temperature[47]. (b), (c) Atom-projected DOS for different defects and perfect MAPbI3, and the electron-hole recombined percentage for different systems after 2 ns. Where, blue and green respectively represent the percentage of the direct recombination and defect assisted recombination[16]. (d) Evolution of populations of the key states for the charge trapping and recombination in different charged Ii and perfect MAPbI3[49]. (e) Dependence of hole capture rate (left) and electron capture rate (right) of PbI on the transition energy level at different temperatures[32]. (f) Non-radiative capture coefficients of PbI as a function of temperature[4]. (g) Relation between iodine ion migration process and carrier lifetime of excited state, the illustration is the migration path of iodine ion[50].
图 8 (a) 传统太阳能电池与钙钛矿在光照下光电性能随时间的变化[42]; (b)光照前(局域畸变)和光照后(晶格膨胀)晶体结构变化的示意图[51]; (c) 在298, 278和263 K温度下光照时长对器件性能的影响[52]; (d) CsPbI3钙钛矿电池在AM 1.5G 模拟日照下浸泡0和180 s后的光伏性能[53]; (e) 在恒定的1个太阳照射下和在黑暗中放置后器件性能随时间的演变, 以及基于能带结构绘制光电流降解和自愈机制的示意图, 包括光降解和积累、黑暗中自愈以及自愈后光照的状态[54]; (f) 测量参考(星形)与掺Cl (六边形)的钙钛矿在光浸泡72和650 h后缺陷活化能的变化[55]; (g) MAPbI3的电子基态和最低激发态势能面示意图, 对于激子的电荷密度, 其中电子和空穴分别用红色和黄色表示[56]; (h) 两种光浸泡效应: 夜间退化白天恢复和白天退化夜间恢复[42]
Fig. 8. (a) Change of photoelectric performance of traditional solar cells and perovskite under light over time[42]. (b) Schematic diagram of crystal structure changes before (local distortion) and after (lattice expansion) light[51]. (c) Influence of illumination time on device performance at 298, 278 and 263 K[52]. (d) Photovoltaic performance of the CsPbI3 perovskite cells for 0 and 180 s light soaking, measured under the AM 1.5G simulated sun light[53]. (e) Evolution of device performance over time under constant 1-sun illumination and after resting the device in dark. Schematic figure of photocurrent degradation and self-healing mechanisms based on the band structures, including photo-degradation and accumulation, during recovery in dark and under illumination after self-healing[54]. (f) The change of defect activation energy of reference (start) and Cl-doped (hexagonal) perovskite after light soaking for 72 h and 650 h is measured[55]. (g) Sketch of the potential energy surfaces in the electronic ground state and lowest excited state for MAPbI3. For the exciton charge density, electrons and holes are shown in red and yellow respectively[56]. (h) Two kinds of light soaking effects: degradation during the night and recovery during the day, degradation during the day and recovery during the night[42].
图 9 (a) 温度和VCl浓度对CsPbCl3钙钛矿相变过程的影响[59]; (b) 氧气分子诱导钙钛矿MAPbI3光降解[60]; (c) CsFAPbI3暴露于水/空气中钙钛矿的相变与降解过程[61]; (d) 钙钛矿中间相结构(MA0.5PbI3)的相分解途径[62]; (e) 有/无Ii缺陷时FAPbI3结构的演化及其能量分布(从立方相到六方相)[63]
Fig. 9. (a) Effects of temperature and VCl concentration on the phase transformation of CsPbCl3 perovskite[59]; (b) photo-degradation of perovskite MAPbI3 induced by oxygen[60]; (c) the phase transition and degradation process of CsFAPbI3 exposed to water/air[61]; (d) the phase decomposition pathway of intermediate phase structure (MA0.5PbI3)[62]; (e) structural evolution and energy profiles of FAPbI3 phase transition with/without Ii defects (from cubic phase to hexagonal phase)[63].
表 1 β-MAPbI3钙钛矿中复合缺陷的缺陷结合能[43]
Table 1. Defect binding energies for the defect complexes in β-MAPbI3[43]
Defect complex Decomposition Binding energy/eV $ {\rm{P}\rm{b}}_{\rm{I}}^{0} $ $ {{\mathrm{V}}}_{{\mathrm{P}}{\mathrm{b}}}^{0} $+$ {{\mathrm{I}}}_{{\mathrm{i}}}^{0} $ –0.850 $ {{\mathrm{V}}}_{{\mathrm{P}}{\mathrm{b}}}^{-1} $+$ {{\mathrm{I}}}_{{\mathrm{i}}}^{+1} $ –0.170 $ {\rm{P}\rm{b}}_{\rm{I}}^{-2} $ $ {{\mathrm{V}}}_{{\mathrm{P}}{\mathrm{b}}}^{-1} $+$ {{\mathrm{I}}}_{{\mathrm{i}}}^{-1} $ 0.850 $ {{\mathrm{V}}}_{{\mathrm{P}}{\mathrm{b}}}^{-2} $+$ {{\mathrm{I}}}_{{\mathrm{i}}}^{0} $ 0.930 $ {\rm{P}\rm{b}}_{\rm{I}}^{-3} $ $ {{\mathrm{V}}}_{{\mathrm{P}}{\mathrm{b}}}^{-2} $+$ {{\mathrm{I}}}_{{\mathrm{i}}}^{-1} $ 2.390 $ {\rm{I}}_{\rm{P}\rm{b}}^{0} $ $ {{\mathrm{V}}}_{{\mathrm{I}}}^{0} $+$ {{\mathrm{P}}{\mathrm{b}}}_{{\mathrm{i}}}^{0} $ –0.360 $ {\rm{I}}_{\rm{P}\rm{b}}^{+1} $ $ {{\mathrm{V}}}_{{\mathrm{I}}}^{+1} $+$ {{\mathrm{P}}{\mathrm{b}}}_{{\mathrm{i}}}^{0} $ 0.190 -
[1] Yin W J, Yan Y, Wei S H 2014 J. Phys. Chem. Lett. 5 3625Google Scholar
[2] Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar
[3] Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar
[4] Zhang X, Turiansky M E, Van de Walle C G 2020 J. Phys. Chem. C 124 6022Google Scholar
[5] Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar
[6] Wang Z, Gan J, Liu X, Shi H, Wei Q, Zeng Q, Qiao L, Zheng Y 2020 J. Power Sources 454 227913Google Scholar
[7] Turedi B, Lintangpradipto M N, Sandberg O J, Yazmaciyan A, Matt G J, Alsalloum A Y, Almasabi K, Sakhatskyi K, Yakunin S, Zheng X, Naphade R, Nematulloev S, Yeddu V, Baran D, Armin A, Saidaminov M I, Kovalenko M V, Mohammed O F, Bakr O M 2022 Adv. Mater. 34 e2202390Google Scholar
[8] Zhang F, Yang B, Mao X, Yang R, Jiang L, Li Y, Xiong J, Yang Y, He R, Deng W, Han K 2017 ACS Appl. Mater. Interfaces 9 14827Google Scholar
[9] NPEL Best Research-Cell Efficiency Chart (https://www.nrel.gov/pv/cell-efficiency.html
[10] Wolff C M, Caprioglio P, Stolterfoht M, Neher D 2019 Adv. Mater. 31 1902762Google Scholar
[11] Saidaminov M I, Kim J, Jain A, Quintero-Bermudez R, Tan H, Long G, Tan F, Johnston A, Zhao Y, Voznyy O, Sargent E H 2018 Nat. Energy 3 648Google Scholar
[12] Huang J, Yuan Y, Shao Y, Yan Y 2017 Nat. Rev. Mater. 2 17042Google Scholar
[13] Rühle S 2016 Sol. Energy 130 139Google Scholar
[14] Shockley W, Read W T 1952 Phys. Rev. 87 835Google Scholar
[15] Hall R N 1952 Phys. Rev. 87 387
[16] Chu W, Zheng Q, Prezhdo O V, Zhao J, Saidi W A 2020 Sci. Adv. 6 eaaw7453Google Scholar
[17] Goldschmidt V M 1926 Naturwissenschaften 14 477Google Scholar
[18] Yin W J, Yang J H, Kang J, Yan Y, Wei S H 2015 J. Mater. Chem. A 3 8926Google Scholar
[19] Perdew J P, Burke K, Ernzerhof M J 1996 Phys. Rev. Lett. 77 3865Google Scholar
[20] Huang H, Bodnarchuk M I, Kershaw S V, Kovalenko M V, Rogach A L 2017 ACS Energy Lett. 2 2071Google Scholar
[21] Xiao Z, Yan Y 2017 Adv. Energy Mater. 7 1701136Google Scholar
[22] Xue J, Wang R, Yang Y 2020 Nat. Rev. Mater. 5 809Google Scholar
[23] Wei S H 2004 Comput. Mater. Sci. 30 337Google Scholar
[24] Ming W, Yang D, Li T, Zhang L, Du M H 2018 Adv. Sci. 5 1700662Google Scholar
[25] Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281Google Scholar
[26] Akimov A V, Prezhdo O V 2013 J. Chem. Theory Comput. 9 4959Google Scholar
[27] Akimov A V, Prezhdo O V 2014 J. Chem. Theory Comput. 10 789Google Scholar
[28] Zheng Q, Chu W, Zhao C, Zhang L, Guo H, Wang Y, Jiang X, Zhao J 2019 Wires Comput. Mol. Sci. 9 e1411Google Scholar
[29] Meng S, Kaxiras E 2008 J. Chem. Phys. 129 054110Google Scholar
[30] Lian C, Hu S Q, Guan M X, Meng S 2018 J. Chem. Phys. 149 154104Google Scholar
[31] Madjet M E A, Akimov A V, El-Mellouhi F, Berdiyorov G R, Ashhab S, Tabeta N, Kaisac S 2016 Phys. Chem. Chem. Phys. 18 5219Google Scholar
[32] Li J, Zhu H F, Zhang Y Y, Yuan Z K, Chen S, Gong X G 2017 Phys. Rev. B 96 104103Google Scholar
[33] Shi L, Xu K, Wang L W 2015 Phys. Rev. B 91 205315Google Scholar
[34] Ni Z, Bao C, Liu Y, Jiang Q, Wu W Q, Chen S, Dai X, Chen B, Hartweg B, Yu Z, Holman Z, Huang J S 2020 Science 367 1352Google Scholar
[35] Yin W J, Shi T, Yan Y 2015 J. Phys. Chem. C 119 5253Google Scholar
[36] Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y, Huang J 2014 Appl. Phys. Lett. 105 163508Google Scholar
[37] Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570Google Scholar
[38] Wang J, Li W, Yin W J 2020 Adv. Mater. 32 e1906115Google Scholar
[39] Meggiolaro D, De Angelis F 2018 ACS Energy Lett. 3 2206Google Scholar
[40] Zhang X, Shen J X, Turiansky M E, Van de Walle C G 2021 Nat. Mater. 20 971Google Scholar
[41] Kang J 2020 Phys. Rev. Mater. 4 085405Google Scholar
[42] Wang J, Duan X, Yin W J 2021 J. Phys. Chem. Lett. 12 9328Google Scholar
[43] Buin A, Comin R, Xu J, Ip A H, Sargent E H 2015 Chem. Mater. 27 4405Google Scholar
[44] Eames C, Frost J M, Barnes P R, O'Regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar
[45] Haruyama J, Sodeyama K, Han L, Tateyama Y 2015 J. Am. Chem. Soc. 137 10048Google Scholar
[46] Azpiroz J M, Mosconi E, Bisquert J, De Angelis F 2015 Energy Environ. Sci. 8 2118Google Scholar
[47] Zhang X, Turiansky M E, Shen J X, Van de Walle C G 2020 Phys. Rev. B 101 140101Google Scholar
[48] Li W, Liu J, Bai F Q, Zhang H X, Prezhdo O V 2017 ACS Energy Lett. 2 1270Google Scholar
[49] He J, Fang W H, Long R 2019 Chem. Sci. 10 10079Google Scholar
[50] Tong C J, Li L, Liu L M, Prezhdo O V 2020 J. Am. Chem. Soc. 142 3060Google Scholar
[51] Tsai H, Asadpour R, Blancon J C, Stoumpos C C, Durand O, Strzalka J W, Chen B, Verduzco R, Ajayan P M, Tretiak S 2018 Science 360 67Google Scholar
[52] Wu X, Ma J, Qin M, Guo X, Li Y, Qin Z, Xu J, Lu X 2021 Adv. Funct. Mater. 31 2101287Google Scholar
[53] Cai B, Yang X, Yu Z, Liang Y, Shan Y, Hagfeldt A, Sun L 2020 J. Power Sources 472 228506Google Scholar
[54] Nie W, Blancon J C, Neukirch A J, Appavoo K, Tsai H, Chhowalla M, Alam M A, Sfeir M Y, Katan C, Even J, Tretiak S, Crochet J J, Gupta G, Mohite A D 2016 Nat. Commun. 7 11574Google Scholar
[55] Vasilev A A, Saranin D S, Gostishchev P A, Didenko S I, Polyakov A Y, Di Carlo A 2022 Opt. Mater. : X 16 100218
[56] Nan G, Zhang X, Lu G 2019 J. Phys. Chem. Lett. 10 7774Google Scholar
[57] Wang J, Yin W J 2023 Metal-Halide Perovskite Semiconductors: From Physical Properties to Opto-electronic Devices and X-ray Sensors (Springer) pp239–263
[58] Chen G Y, Guo Z D, Gong X G, Yin W J 2022 Chem 8 3120Google Scholar
[59] Ma J P, Yin J, Chen Y M, Zhao Q, Zhou Y, Li H, Kuroiwa Y, Moriyoshi C, Li Z Y, Bakr O M, Mohammed O F, Sun H T 2019 ACS Mater. Lett. 1 185Google Scholar
[60] Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A 2017 Nat. Commun. 8 15218Google Scholar
[61] Hidalgo J, Kaiser W, An Y, Li P, Oh Z, Castro-Méndez A F, LaFollette D K, Kim S, Lai B, Breternitz J, Schoor S, Perini C A R, Mosconi E, Angelis F D, Correa-Baena J P 2023 J. Am. Chem. Soc. 145 24549
[62] Chen S, Wu C, Han B, Liu Z, Mi Z, Hao W, Zhao J, Wang X, Zhang Q, Liu K, Qi J, Cao J, Feng J, Yu D, Li J, Gao P 2021 Nat. Commun. 12 5516
[63] Tan S, Yavuz I, Weber M H, Huang T, Chen C H, Wang R, Wang H C, Ko J H, Nuryyeva S, Xue J, Zhao Y, Wei K H, Lee J W, Yang Y 2020 Joule 4 2426Google Scholar
计量
- 文章访问数: 4338
- PDF下载量: 212
- 被引次数: 0