搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EDTA/SnO2双层复合电子传输层在钙钛矿电池中的应用

孙盟杰 何志群 郑毅帆 邵宇川

引用本文:
Citation:

EDTA/SnO2双层复合电子传输层在钙钛矿电池中的应用

孙盟杰, 何志群, 郑毅帆, 邵宇川

Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells

Sun Meng-Jie, He Zhi-Qun, Zheng Yi-Fan, Shao Yu-Chuan
PDF
HTML
导出引用
  • 有机-无机杂化钙钛矿太阳能电池器件因其高效率受到广泛关注, 而界面问题是制备高效钙钛矿太阳能电池的关键问题之一. 本文研究了一种高效的乙二胺四乙酸(ethylene diamine tetraacetic acid, EDTA)/SnO2双层复合结构, 将超薄的EDTA层与ITO(锡-铟氧化物)电极接触, SnO2层与钙钛矿界面接触, 作为电子传输层(ETL)用于制备钙钛矿太阳能电池. 有趣的是, 复合ETL的顶部SnO2侧的表面形态可以通过调整下面的EDTA层来进行微调. 通过调整EDTA膜厚, 可以调控钙钛矿层结晶过程中的成核过程, 调节了电子传输层与钙钛矿层之间的载流子提取过程. 本文中制备的钙钛矿太阳能电池的回滞效应可以忽略, 并且经过第三方认证, 已经实现了20.2%的能量转换效率.
    Organic-inorganic hybrid perovskite solar cell devices have received wide attention because of their high efficiency, and interface problem is one of the key problems in the preparation of perovskite solar cells. An efficient double-layered ethylene diamine tetraacetic acid (EDTA)/SnO2 composite structure, the ultrathin EDTA layer in contact with ITO electrode and an SnO2 layer interfaced with the perovskite, is developed as an electron-transport layer (ETL) in the preparation of perovskite solar cells. It is interesting that the surface morphology of the top SnO2 side of the composite ETL can be finely adjusted by tuning the underneath EDTA layer. These control the nucleation process in crystallization of the perovskite layer and adjust carrier extraction process between the electron transport and perovskite layers. High performance perovskite solar cells having a certified power conversion efficiency of 20.2% with negligible hysteresis are achieved.
      通信作者: 郑毅帆, yifanzheng@siom.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFE0118000)、国家自然科学基金青年科学基金(批准号: 52103279, 62104234)和上海市青年科技英才扬帆计划(批准号: 21YF1454000)资助的课题.
      Corresponding author: Zheng Yi-Fan, yifanzheng@siom.ac.cn
    • Funds: Project supported by the National Key R&D program of China (Grant No. 2018YFE0118000), National Natural Science Foundation of China (Grant Nos. 52103279, 62104234), and Shanghai Sailing Program (Grant No. 21YF1454000).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    https://www.nrel.gov/pv/cell-efficiency.html [2022-2-14]

    [3]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T-W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [4]

    Kim H S, Jang I H, Ahn N, Choi M, Guerrero A, Bisquert J, Park N G 2015 J. Phys. Chem. Lett. 6 4633Google Scholar

    [5]

    Dong Q, Wang M, Zhang Q, Chen F, Zhang S, Bian J, Ma T, Wang L, Shi Y 2017 Nano Energy 38 358Google Scholar

    [6]

    Li W, Zhang W, Van Reenen S, Sutton R J, Fan J, Haghighirad A A, Johnston M B, Wang L, Snaith H J 2016 Energy Environ. Sci. 9 490Google Scholar

    [7]

    Yang J, Siempelkamp B D, Mosconi E, De Angelis F, Kelly T L 2015 Chem. Mater. 27 4229Google Scholar

    [8]

    Dong Q, Shi Y, Wang K, Li Y, Wang S, Zhang H, Xing Y, Du Y, Bai X, Ma T 2015 J. Phys. Chem. C 119 10212

    [9]

    Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J 2017 Adv. Mater. 29 1703852Google Scholar

    [10]

    Sun M, Liang C, Zhang H, Ji C, Sun F, You F, Jing X, He Z 2018 J. Mater. Chem. A 6 24793Google Scholar

    [11]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [12]

    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J 2016 Nat. Energy 2 16177

    [13]

    Yang G, Tao H, Qin P, Ke W, Fang G 2016 J. Mater. Chem. A 4 3970Google Scholar

    [14]

    Wang F, Zhang Y, Yang M, Du J, Xue L, Yang L, Fan L, Sui Y, Yang J, Zhang X 2019 Nano Energy 63 103825Google Scholar

    [15]

    Ke W, Xiao C, Wang C, Saparov B, Duan H S, Zhao D, Xiao Z, Schulz P, Harvey S P, Liao W, Meng W, Yu Y, Cimaroli A J, Jiang C-S, Zhu K, Al-Jassim M, Fang G, Mitzi D B, Yan Y 2016 Adv. Mater. 28 5214Google Scholar

    [16]

    Yang G, Wang C, Lei H, Zheng X, Qin P, Xiong L, Zhao X, Yan Y, Fang G 2017 J. Mater. Chem. A 5 1658Google Scholar

    [17]

    Ma J, Yang G, Qin M, Zheng X, Lei H, Chen C, Chen Z, Guo Y, Han H, Zhao X, Fang G 2017 Adv. Sci. 4 1700031Google Scholar

    [18]

    Li N, Niu X, Pei F, Liu H, Cao Y, Liu Y, Xie H, Gao Y, Chen Q, Mo F, Zhou H 2019 Sol. RRL 4 1900217

    [19]

    Hafer E, Holzgrabe U, Kraus K, Adams K, Hook J M, Diehl B 2020 Magnetic Resonance in Chemistry 58 653Google Scholar

    [20]

    Li X, Liu X, Zhang W, Wang H-Q, Fang J 2017 Chem. Mater. 29 4176Google Scholar

    [21]

    Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S 2018 Nat. Commun. 9 3239Google Scholar

    [22]

    Li X, Zhang W, Wang X, Wu Y, Gao F, Fang J 2015 J. Mater. Chem. A 3 504Google Scholar

    [23]

    Li X, Zhang W, Wang X, Gao F, Fang J 2014 ACS Appl. Mater. Interfaces 6 20569Google Scholar

    [24]

    Pham H T, Duong T, Rickard W D A, Kremer F, Weber K J, Wong-Leung J 2019 J. Phys. Chem. C 123 26718Google Scholar

    [25]

    Xie L Q, Chen L, Nan Z A, Lin H X, Wang T, Zhan D P, Yan J W, Mao B W, Tian Z Q 2017 J. Am. Chem. Soc. 139 3320Google Scholar

    [26]

    Turren-Cruz S-H, Hagfeldt A, Saliba M 2018 Science 362 449Google Scholar

    [27]

    Warren B E 1990 X-Ray Diffraction (Second Edition) (New York: Dover Publication)

    [28]

    Guo Z, He Z, Sun M, Zhang H, Xu Y, Li X, Liang C, Jing X 2018 Polymer 153 398Google Scholar

    [29]

    Mitchell G R, Windle A H 1982 Polymer 23 1269Google Scholar

    [30]

    Zhao L, Li Q, Hou C-H, Li S, Yang X, Wu J, Zhang S, Hu Q, Wang Y, Zhang Y, Jiang Y, Jia S, Shyue J-J, Russell T P, Gong Q, Hu X, Zhu R 2022 J. Am. Chem. Soc. 144 1700Google Scholar

    [31]

    Tauc J 1968 Mater. Res. Bull. 3 37Google Scholar

    [32]

    Son D-Y, Lee J-W, Choi Y J, Jang I-H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N-G 2016 Nat. Energy 1 16081Google Scholar

    [33]

    Kim M, Kim G-H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [34]

    Chen S, Wen X, Huang S, Huang F, Cheng Y-B, Green M, Ho-Baillie A 2017 Sol. RRL 1 1600001Google Scholar

  • 图 1  使用不同EDTA排布方法制备的PSCs的J-V特性图

    Fig. 1.  J-V characteristics of PSCs with different arrangement mode of using EDTA.

    图 2  在ITO电极上通过旋涂的方法制备EDTA/SnO2双层ETL的示意图

    Fig. 2.  A schematic diagram of the double-layered EDTA/SnO2 composite layer prepared via spin-coating of EDTA and SnO2 in sequence on top of an ITO electrode.

    图 3  在不同EDTA溶液浓度的双层EDTA/SnO2复合ETL上制备的钙钛矿薄膜样品的SEM图像 (a) 无EDTA (b) 0.1 mg/mL (c) 0.15 mg/mL (d) 0.2 mg/mL (e) 0.3 mg/mL. (f)使用Image-Pro软件根据(a)—(e)进行计算得出的粒径分布

    Fig. 3.  SEM top surface images of perovskite film specimens fabricated on double-layered EDTA/SnO2 composite ETLs with different EDTA precursors: (a) No EDTA; (b) 0.1 mg/mL; (c) 0.15 mg/mL; (d) 0.2 mg/mL; (e) 0.3 mg/mL; (f) particle size distribution calculated according to (a)–(e) using Image-Pro software.

    图 4  沉积在双层EDTA (mg/mL)/SnO2复合膜上钙钛矿样品的X射线衍射图, EDTA溶液浓度为0—0.3 mg/mL

    Fig. 4.  X-ray diffraction diagrams from perovskite specimens deposited on double-layered EDTA (mg/ml)/SnO2 composite films of varying EDTA concentration ranging from 0 to 0.3 mg/mL as indicated.

    图 5  SnO2薄膜的AFM图像 (a)在ITO衬底上, 在有不同厚度的EDTA中间层的ITO/EDTA衬底上, 使用的EDTA溶液浓度分别为(b) 0.1, (c) 0.15, (d) 0.2以及(e) 0.3 mg/mL

    Fig. 5.  AFM images of SnO2 films on an ITO substrate (a) or a substrate having EDTA interlayer with a concentration of (b) 0.1, (c) 0.15, (d) 0.2, and (e) 0.3 mg/mL.

    图 6  在使用不同浓度的EDTA前驱体溶液的EDTA/SnO2复合ETL上制备的钙钛矿薄膜的 (a)吸收光谱; (b) Tauc-Plot图分析光学带隙(Eg); (c)稳态PL光谱(479 nm激发); (d) TRPL光谱(800 nm监测)

    Fig. 6.  (a) Absorbance spectra, (b) Tauc plot to analyze optical band gap (Eg), (c) steady-state PL spectra (excited at 479 nm), and (d) TRPL spectra (excited at 479 nm and monitored at 800 nm) of perovskite films with different concentration of EDTA precursors.

    图 7  使用不同厚度的EDTA中间层构成的EDTA/SnO2复合ETL的PSCs的性能 (a) J-V特性曲线; (b) EQE光谱; (c) 暗电流曲线以及(d) Device 0和3稳定在最大功率点处输出功率和光电流测量

    Fig. 7.  Performance of PSCs: (a) J-V characteristics under a standard solar illumination; (b) EQE spectra; (c) J-V characteristics under darkness measured from Device 0 to Device 4, and (d) Stabilized PCEs and J at the maximum power point measured from Device 0 and Device 3.

    图 8  不同EDTA前驱体浓度的EDTA/SnO2复合ETL上制备的总计150个器件的VOC, JSC, FF, PCE的统计图

    Fig. 8.  Statistical graph of VOC, JSC, FF, and PCE of 150 cells prepared on EDTA/SnO2 composite ETLs with different concentration of EDTA precursor.

    表 1  用不同方法使用EDTA制备ETL的器件的光伏参数表

    Table 1.  Photovoltaic parameters derived from J-V measurements of devices prepared with different ways of using EDTA.

    (ITO)/ETLVOC/
    V
    JSC/

    (mA·cm–2)
    FF
    /%
    PCE
    /%
    SnO21.04723.2075.4218.32
    EDTA(0.2 mg/mL)1.04421.9771.6316.43
    SnO2: EDTAa1.07723.0776.6719.05
    SnO2/EDTA (0.2 mg/mL)1.05923.5578.5918.05
    EDTA (0.2 mg/mL)/SnO21.06823.6581.3720.55
    a 溶液中SnO2∶EDTA质量比为133.5∶1.
    下载: 导出CSV

    表 2  EDTA/SnO2表面钙钛矿薄膜的结晶特性

    Table 2.  The crystallization of the perovskite films on top of the EDTA/SnO2 surface.

    EDTA
    concentration/

    (mg·ML–1)
    Perovskite films
    SEM X-ray diffraction
    Grain size/
    nm
    2θ at (100)/
    (°)
    Intensity
    at (100)
    L at (100)/
    nm
    0557 14.000.543516
    0.178414.000.671765
    0.1583414.000.839811
    0.292514.001.000888
    0.370414.000.756664
    下载: 导出CSV

    表 3  由沉积在纯SnO2表面或EDTA/SnO2复合表面的钙钛矿薄膜的TRPL光谱的双指数拟合得到的衰减时间

    Table 3.  Decay times obtained by a biexponential fit of TRPL spectra from perovskite films deposited on a pure SnO2 surface or on EDTA/SnO2 composite surfaces.

    EDTA
    concentration/

    (mg·mL–1)
    τ1/nsA1/% aτ2/nsA2/% aτavg/ns
    048.770.2745.429.8652.3
    0.138.378.1710.921.9602.4
    0.1536.878.1484.421.9389.0
    0.233.881.3465.518.7361.9
    0.335.380.9659.619.1544.6
    aAi is the fraction of τi component.
    下载: 导出CSV

    表 4  在标准太阳模拟光源下由J-V测量得到的PSCs详细光伏参数表

    Table 4.  Photovoltaic parameters derived from J-V measurements of devices prepared with different based on reverse and forward scans under standard illumination.

    DevicesScan directionVOC/VJSC/
    (mA·cm–2)
    FF/%PCE/%H-index/
    %
    RPRS/
    Ω
    Device 0RS1.04723.2075.3518.38.2537573.64
    (control)FS1.05223.0369.3216.79
    Device 1RS1.06223.4277.5319.286.9544093.26
    FS1.04723.1274.1217.94
    Device 2RS1.06823.6179.6020.073.9946833.02
    FS1.06323.4177.4219.27
    Device 3RS1.06823.6581.3720.552.5355372.88
    FS1.06423.4880.1820.03
    Device 4RS1.05723.6078.4919.586.6951353.19
    FS1.05123.2274.8818.27
    下载: 导出CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    https://www.nrel.gov/pv/cell-efficiency.html [2022-2-14]

    [3]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T-W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [4]

    Kim H S, Jang I H, Ahn N, Choi M, Guerrero A, Bisquert J, Park N G 2015 J. Phys. Chem. Lett. 6 4633Google Scholar

    [5]

    Dong Q, Wang M, Zhang Q, Chen F, Zhang S, Bian J, Ma T, Wang L, Shi Y 2017 Nano Energy 38 358Google Scholar

    [6]

    Li W, Zhang W, Van Reenen S, Sutton R J, Fan J, Haghighirad A A, Johnston M B, Wang L, Snaith H J 2016 Energy Environ. Sci. 9 490Google Scholar

    [7]

    Yang J, Siempelkamp B D, Mosconi E, De Angelis F, Kelly T L 2015 Chem. Mater. 27 4229Google Scholar

    [8]

    Dong Q, Shi Y, Wang K, Li Y, Wang S, Zhang H, Xing Y, Du Y, Bai X, Ma T 2015 J. Phys. Chem. C 119 10212

    [9]

    Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J 2017 Adv. Mater. 29 1703852Google Scholar

    [10]

    Sun M, Liang C, Zhang H, Ji C, Sun F, You F, Jing X, He Z 2018 J. Mater. Chem. A 6 24793Google Scholar

    [11]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [12]

    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J 2016 Nat. Energy 2 16177

    [13]

    Yang G, Tao H, Qin P, Ke W, Fang G 2016 J. Mater. Chem. A 4 3970Google Scholar

    [14]

    Wang F, Zhang Y, Yang M, Du J, Xue L, Yang L, Fan L, Sui Y, Yang J, Zhang X 2019 Nano Energy 63 103825Google Scholar

    [15]

    Ke W, Xiao C, Wang C, Saparov B, Duan H S, Zhao D, Xiao Z, Schulz P, Harvey S P, Liao W, Meng W, Yu Y, Cimaroli A J, Jiang C-S, Zhu K, Al-Jassim M, Fang G, Mitzi D B, Yan Y 2016 Adv. Mater. 28 5214Google Scholar

    [16]

    Yang G, Wang C, Lei H, Zheng X, Qin P, Xiong L, Zhao X, Yan Y, Fang G 2017 J. Mater. Chem. A 5 1658Google Scholar

    [17]

    Ma J, Yang G, Qin M, Zheng X, Lei H, Chen C, Chen Z, Guo Y, Han H, Zhao X, Fang G 2017 Adv. Sci. 4 1700031Google Scholar

    [18]

    Li N, Niu X, Pei F, Liu H, Cao Y, Liu Y, Xie H, Gao Y, Chen Q, Mo F, Zhou H 2019 Sol. RRL 4 1900217

    [19]

    Hafer E, Holzgrabe U, Kraus K, Adams K, Hook J M, Diehl B 2020 Magnetic Resonance in Chemistry 58 653Google Scholar

    [20]

    Li X, Liu X, Zhang W, Wang H-Q, Fang J 2017 Chem. Mater. 29 4176Google Scholar

    [21]

    Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S 2018 Nat. Commun. 9 3239Google Scholar

    [22]

    Li X, Zhang W, Wang X, Wu Y, Gao F, Fang J 2015 J. Mater. Chem. A 3 504Google Scholar

    [23]

    Li X, Zhang W, Wang X, Gao F, Fang J 2014 ACS Appl. Mater. Interfaces 6 20569Google Scholar

    [24]

    Pham H T, Duong T, Rickard W D A, Kremer F, Weber K J, Wong-Leung J 2019 J. Phys. Chem. C 123 26718Google Scholar

    [25]

    Xie L Q, Chen L, Nan Z A, Lin H X, Wang T, Zhan D P, Yan J W, Mao B W, Tian Z Q 2017 J. Am. Chem. Soc. 139 3320Google Scholar

    [26]

    Turren-Cruz S-H, Hagfeldt A, Saliba M 2018 Science 362 449Google Scholar

    [27]

    Warren B E 1990 X-Ray Diffraction (Second Edition) (New York: Dover Publication)

    [28]

    Guo Z, He Z, Sun M, Zhang H, Xu Y, Li X, Liang C, Jing X 2018 Polymer 153 398Google Scholar

    [29]

    Mitchell G R, Windle A H 1982 Polymer 23 1269Google Scholar

    [30]

    Zhao L, Li Q, Hou C-H, Li S, Yang X, Wu J, Zhang S, Hu Q, Wang Y, Zhang Y, Jiang Y, Jia S, Shyue J-J, Russell T P, Gong Q, Hu X, Zhu R 2022 J. Am. Chem. Soc. 144 1700Google Scholar

    [31]

    Tauc J 1968 Mater. Res. Bull. 3 37Google Scholar

    [32]

    Son D-Y, Lee J-W, Choi Y J, Jang I-H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N-G 2016 Nat. Energy 1 16081Google Scholar

    [33]

    Kim M, Kim G-H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [34]

    Chen S, Wen X, Huang S, Huang F, Cheng Y-B, Green M, Ho-Baillie A 2017 Sol. RRL 1 1600001Google Scholar

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [4] 张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉. 基于双修饰策略制备高性能反式钙钛矿太阳能电池. 物理学报, 2024, 73(24): 1-11. doi: 10.7498/aps.73.20241238
    [5] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [6] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [7] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [8] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [9] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] 隋国民, 严桂俊, 杨光, 张宝, 冯亚青. 二维氟代苯甲胺钙钛矿结构和光电性能的理论研究. 物理学报, 2022, 71(20): 208801. doi: 10.7498/aps.71.20220802
    [11] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [12] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [13] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [14] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [15] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [16] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [17] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [18] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] 王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊. 溶剂对钙钛矿薄膜形貌和结晶性的影响研究. 物理学报, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
    [20] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
计量
  • 文章访问数:  7235
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-11
  • 修回日期:  2022-03-08
  • 上网日期:  2022-06-24
  • 刊出日期:  2022-07-05

/

返回文章
返回