搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿太阳能电池研究进展: 空间电势与光电转换机制

王言博 崔丹钰 张才益 韩礼元 杨旭东

引用本文:
Citation:

钙钛矿太阳能电池研究进展: 空间电势与光电转换机制

王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东

Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism

Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong
PDF
HTML
导出引用
  • 钙钛矿太阳能电池具有高光电转换效率和低成本制备的特点, 是极具希望实现大规模应用的下一代光伏技术. 然而, 对该类器件的光电转换过程的认知仍然不够清晰, 相关研究难以直接观测器件内部的空间电势及其对光生电荷载流子的影响. 开尔文探针力显微镜技术能够直接探测出器件空间电势的分布, 进而直接反映器件工作的状态, 成为理解钙钛矿太阳能电池的光电转换机理的有效途径. 本文主要介绍了钙钛矿太阳能电池内部空间电势分布与光电转换机制的研究进展, 集中讨论了通过开尔文探针力显微镜技术直接探测空间电势的光致变化和电致变化来揭示电荷载流子产生、分离、输运、复合等光电转换关键机制, 并对其在未来研究中存在的问题和挑战做了进一步的展望.
    Perovskite solar cells, as a promising next-generation photovoltaic technology for large-scale application, have demonstrated the advantages of high absorption coefficient, tunable bandgap, considerable photoelectric conversion efficiency and low-cost fabrication. However, the photoelectric conversion process within the device is still not understood clearly. One of the major reasons is that it is difficult to directly observe the space potential inside the device and its effect on the photogenerated charge carriers. The direct measurement and analysis of the space potential inside the device and the clarification of the intrinsic relationship between the space potential and the charge carrier micro-process under illumination and different electric field conditions can reveal the photoelectric conversion mechanism in depth, and thus providing the scientific research basis for the further development. Kelvin probe force microscopy (KPFM), a testing technology that is non-contact, can detect the space potential distribution without any damage to the device, demonstrating the great potential to unveil the working mechanism of perovskite solar cells accurately. Such a characterization method can work under vacuum condition. The KPFM combines Kelvin method of measuring contact potential difference with the scan probe microscopy to characterize internal carrier dynamic behavior with high resolution on a nanometer scale. The study of the spatial potential distribution of semiconductor device plays an important role in understanding the working mechanism of new perovskite solar cells. For example, under an open-circuit condition, the intensity and width of the electric field and space charge region can be obtained from the spatial potential distribution, and the bending direction of the energy band can be judged according to the increase or decrease of the potential. While in a short-circuit case, the generation and transport of charge carriers can be obtained. In this review, we mainly introduce the research progress of the space potential distribution and optoelectronic conversion mechanism in perovskite solar cells. The key mechanism of charge carrier generation, separation, transport and recombination are revealed by using KPFM to directly observe the space potential variations caused by light or electric field. We also prospect the issues and challenges in the future research.
      通信作者: 杨旭东, Yang.xudong@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11574199, 11674219)资助的课题.
      Corresponding author: Yang Xu-Dong, Yang.xudong@sjtu.edu.cn
    • Funds: Project supported the National Natural Science Foundation of China (Grant Nos. 11574199, 11674219).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [3]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [4]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [5]

    Lin K, Xing J, Quan L N, García de Arquer F P, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar

    [6]

    Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y, Park N G 2017 Nature 550 87Google Scholar

    [7]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [8]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [9]

    Yang M J, Zhang T Y, Schulz P, Li Z, Li G, Kim D H, Guo N J, Berry J J, Zhu K, Zhao Y X 2016 Nat. Commun. 7 12305

    [10]

    Ye F, Chen H, Xie F X, Tang W T, Yin M S, He J J, Bi E B, Wang Y B, Yang X D, Han L Y 2016 Energy Environ. Sci. 9 2295Google Scholar

    [11]

    Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun L D, Yan C H 2019 Science 363 265Google Scholar

    [12]

    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Gratzel M, Han L 2015 Science 350 944Google Scholar

    [13]

    Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963Google Scholar

    [14]

    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Gratzel M 2017 Science 358 768Google Scholar

    [15]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [16]

    Luo D Y, Yang W Q, Wang Z P, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z J, Liu T H, Chen K, Ye F J, Wu P, Zhao L C, Wu J, Tu Y G, Zhang Y F, Yang X Y, Zhang W, Friend R H, Gong Q H, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [17]

    Tan H, Jain A, Voznyy O, Lan X, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [18]

    Wu T, Wang Y, Li X, Wu Y, Meng X, Cui D, Yang X, Han L 2019 Adv. Energy Mater. 9 1803766

    [19]

    Jiang C S, Yang M J, Zhou Y Y, To B, Nanayakkara S U, Luther J M, Zhou W L, Berry J J, van de Lagemaat J, Padture N P, Zhu K, Al-Jassim M M 2015 Nat. Commun. 6 8397Google Scholar

    [20]

    Kang Z, Si H, Shi M, Xu C, Fan W, Ma S, Kausar A, Liao Q, Zhang Z, Zhang Y 2019 Sci. China: Mater. 62 776

    [21]

    Heiland G 1975 Berichte der Bunsengesellschaft für Physikalische Chemie 79 641

    [22]

    Nonnenmacher M, O’Boyle M P, Wickramasinghe H K 1991 Appl. Phys. Lett. 58 2921Google Scholar

    [23]

    Bergmann V W, Weber S A L, Javier Ramos F, Nazeeruddin M K, Grätzel M, Li D, Domanski A L, Lieberwirth I, Ahmad S, Berger R 2014 Nat. Commun. 5 5001Google Scholar

    [24]

    Dymshits A, Henning A, Segev G, Rosenwaks Y, Etgar L 2015 Sci. Rep. 5 8704Google Scholar

    [25]

    Cai M L, Ishida N, Li X, Yang X D, Noda T, Wu Y Z, Xie F X, Naito H, Fujita D, Han L Y 2018 Joule 2 296Google Scholar

    [26]

    Chang J, Xiao J, Lin Z, Zhu H, Xu Q H, Zeng K, Hao Y, Ouyang J 2016 J. Mater. Chem. A 4 17464Google Scholar

    [27]

    Do Kim H, Ohkita H, Benten H, Ito S 2016 Adv. Mater. 28 917Google Scholar

    [28]

    Li M, Yan X, Kang Z, Liao X, Li Y, Zheng X, Lin P, Meng J, Zhang Y 2017 ACS Appl. Mater. Interfaces 9 7224Google Scholar

    [29]

    Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, de Quilettes D W, Sadhanala A, Li W Z, Wang L D, Ginger D S, Friend R H, Snaith H J 2015 Nat. Commun. 6 10030

    [30]

    Li W, Rothmann M U, Liu A, Wang Z Y, Zhang Y P, Pascoe A R, Lu J F, Jiang L C, Chen Y, Huang F Z, Peng Y, Bao Q L, Etheridge J, Bach U, Cheng Y B 2017 Adv. Energy Mater. 7 1700946

    [31]

    Yun J S, Kim J, Young T, Patterson R J, Kim D, Seidel J, Lim S, Green M A, Huang S J, Ho-Baillie A 2018 Adv. Funct. Mater. 28 1705363

    [32]

    Wang C, Xiao C, Yu Y, Zhao D, Awni R A, Grice C R, Ghimire K, Constantinou I, Liao W, Cimaroli A J, Liu P, Chen J, Podraza N J, Jiang C S, Al-Jassim M M, Zhao X, Yan Y 2017 Adv. Energy Mater. 7 1700414Google Scholar

    [33]

    Xiao C X, Wang C L, Ke W J, Gorman B P, Ye J C, Jiang C S, Yan Y F, Al-Jassim M M 2017 ACS Appl. Mater. Interfaces 9 38373Google Scholar

    [34]

    Lan F, Jiang M, Tao Q, Li G 2018 IEEE J. Photovolt. 8 125Google Scholar

  • 图 1  开尔文探针力显微镜技术原理示意图[19]

    Fig. 1.  Illustration of Kelvin probe force microscopy[19].

    图 2  (a)通过开尔文探针力显微镜技术探测正式介孔结构器件的空间电势; (b)电池空间电势光致变化[23]

    Fig. 2.  (a) Potential of mesoporous perovskite solar cells using Kelvin probe force microscopy (FTO, fluorine-doped tin oxide; HTM, hole-transport material); (b) space potential changes of perovskite solar cells under illumination (CPD, contact potential difference)[23].

    图 3  (a)正式平面结构, 钙钛矿组分碘化铅过量和碘甲胺过量时对应的电池空间电势变化; (b)正式介孔结构、正式平面结构电池性能和理想因子与钙钛矿组分之间的关系[25]

    Fig. 3.  (a) Kelvin probe force microscopy characterizations of perovskite solar cells for the mesoporous structures using MAI- and PbI2-Rich precursors; (b) photovoltaic performance of mesoporous and planar perovskite solar cells and ideality factor on PbI2/CH3NH3I(MAI) mole ratio[25].

    图 4  (a)正式平面结构钙钛矿电池在未加偏压下的空间电势分布; (b)正式平面结构在不同电压下的空间电势及电场分布情况; (c)正式介孔结构在不同电压下的空间电势及电场分布情况[19]

    Fig. 4.  (a) Potential distribution of mesoporous perovskite solar cells under Vb = 0 (TCO, transparent conducting oxide; PS, perovskite); (b) electrical potential and field profiling results on the planar device under different biases; (c) electrical potential and field profiling results on the optimized mesoporous device under different biases[19].

    图 5  (a)二氧化锡正式平面结构钙钛矿电池在不同电压下的空间电势分布; (b) 100, (c) 150, (d) 200 ℃退火后处理的二氧化锡作为电荷传输材料的器件不同电压下的空间电势及电场分布情况[32]

    Fig. 5.  (a) Potential difference of planar device based on SnO2 electron transfer layer, under different biases (fluorine-dopled SnO2, FTO; electron selective layer, ESL; hole selective layer, HSL); (b) 100, (c) 150, (d) 200 ℃ electrical potential and field profiling results of the device based on low-temperature thermal annealing of SnO2 electron transfer layer[32].

    图 6  (a)正式钙钛矿电池在不同电压下的空间电势分布; (b)反式钙钛矿电池在不同电压下的空间电势分布[34]

    Fig. 6.  (a) Potential distribution of regular perovskite solar cells under different biases; (b) potential distribution of inverted perovskite solar cells under different biases[34].

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [3]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [4]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [5]

    Lin K, Xing J, Quan L N, García de Arquer F P, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar

    [6]

    Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y, Park N G 2017 Nature 550 87Google Scholar

    [7]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [8]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [9]

    Yang M J, Zhang T Y, Schulz P, Li Z, Li G, Kim D H, Guo N J, Berry J J, Zhu K, Zhao Y X 2016 Nat. Commun. 7 12305

    [10]

    Ye F, Chen H, Xie F X, Tang W T, Yin M S, He J J, Bi E B, Wang Y B, Yang X D, Han L Y 2016 Energy Environ. Sci. 9 2295Google Scholar

    [11]

    Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun L D, Yan C H 2019 Science 363 265Google Scholar

    [12]

    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Gratzel M, Han L 2015 Science 350 944Google Scholar

    [13]

    Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963Google Scholar

    [14]

    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Gratzel M 2017 Science 358 768Google Scholar

    [15]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [16]

    Luo D Y, Yang W Q, Wang Z P, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z J, Liu T H, Chen K, Ye F J, Wu P, Zhao L C, Wu J, Tu Y G, Zhang Y F, Yang X Y, Zhang W, Friend R H, Gong Q H, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [17]

    Tan H, Jain A, Voznyy O, Lan X, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [18]

    Wu T, Wang Y, Li X, Wu Y, Meng X, Cui D, Yang X, Han L 2019 Adv. Energy Mater. 9 1803766

    [19]

    Jiang C S, Yang M J, Zhou Y Y, To B, Nanayakkara S U, Luther J M, Zhou W L, Berry J J, van de Lagemaat J, Padture N P, Zhu K, Al-Jassim M M 2015 Nat. Commun. 6 8397Google Scholar

    [20]

    Kang Z, Si H, Shi M, Xu C, Fan W, Ma S, Kausar A, Liao Q, Zhang Z, Zhang Y 2019 Sci. China: Mater. 62 776

    [21]

    Heiland G 1975 Berichte der Bunsengesellschaft für Physikalische Chemie 79 641

    [22]

    Nonnenmacher M, O’Boyle M P, Wickramasinghe H K 1991 Appl. Phys. Lett. 58 2921Google Scholar

    [23]

    Bergmann V W, Weber S A L, Javier Ramos F, Nazeeruddin M K, Grätzel M, Li D, Domanski A L, Lieberwirth I, Ahmad S, Berger R 2014 Nat. Commun. 5 5001Google Scholar

    [24]

    Dymshits A, Henning A, Segev G, Rosenwaks Y, Etgar L 2015 Sci. Rep. 5 8704Google Scholar

    [25]

    Cai M L, Ishida N, Li X, Yang X D, Noda T, Wu Y Z, Xie F X, Naito H, Fujita D, Han L Y 2018 Joule 2 296Google Scholar

    [26]

    Chang J, Xiao J, Lin Z, Zhu H, Xu Q H, Zeng K, Hao Y, Ouyang J 2016 J. Mater. Chem. A 4 17464Google Scholar

    [27]

    Do Kim H, Ohkita H, Benten H, Ito S 2016 Adv. Mater. 28 917Google Scholar

    [28]

    Li M, Yan X, Kang Z, Liao X, Li Y, Zheng X, Lin P, Meng J, Zhang Y 2017 ACS Appl. Mater. Interfaces 9 7224Google Scholar

    [29]

    Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, de Quilettes D W, Sadhanala A, Li W Z, Wang L D, Ginger D S, Friend R H, Snaith H J 2015 Nat. Commun. 6 10030

    [30]

    Li W, Rothmann M U, Liu A, Wang Z Y, Zhang Y P, Pascoe A R, Lu J F, Jiang L C, Chen Y, Huang F Z, Peng Y, Bao Q L, Etheridge J, Bach U, Cheng Y B 2017 Adv. Energy Mater. 7 1700946

    [31]

    Yun J S, Kim J, Young T, Patterson R J, Kim D, Seidel J, Lim S, Green M A, Huang S J, Ho-Baillie A 2018 Adv. Funct. Mater. 28 1705363

    [32]

    Wang C, Xiao C, Yu Y, Zhao D, Awni R A, Grice C R, Ghimire K, Constantinou I, Liao W, Cimaroli A J, Liu P, Chen J, Podraza N J, Jiang C S, Al-Jassim M M, Zhao X, Yan Y 2017 Adv. Energy Mater. 7 1700414Google Scholar

    [33]

    Xiao C X, Wang C L, Ke W J, Gorman B P, Ye J C, Jiang C S, Yan Y F, Al-Jassim M M 2017 ACS Appl. Mater. Interfaces 9 38373Google Scholar

    [34]

    Lan F, Jiang M, Tao Q, Li G 2018 IEEE J. Photovolt. 8 125Google Scholar

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [3] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [4] 温恒迪, 刘跃, 甄良, 李洋, 徐成彦. MoS2/MoTe2垂直异质结的电荷传输及其调制. 物理学报, 2023, 72(3): 036102. doi: 10.7498/aps.72.20221768
    [5] 冯婕, 郭强, 舒鹏丽, 温阳, 温焕飞, 马宗敏, 李艳君, 刘俊, 伊戈尔·弗拉基米罗维奇·雅明斯基. 超高真空原子尺度Aux/Si(111)-(7×7)表面吸附的电荷分布测量. 物理学报, 2023, 72(11): 110701. doi: 10.7498/aps.72.20230051
    [6] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [7] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [8] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [9] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [10] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [11] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [12] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [13] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响. 物理学报, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [14] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
计量
  • 文章访问数:  14824
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-18
  • 修回日期:  2019-05-29
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回