-
钙钛矿太阳能电池具有高光电转换效率和低成本制备的特点, 是极具希望实现大规模应用的下一代光伏技术. 然而, 对该类器件的光电转换过程的认知仍然不够清晰, 相关研究难以直接观测器件内部的空间电势及其对光生电荷载流子的影响. 开尔文探针力显微镜技术能够直接探测出器件空间电势的分布, 进而直接反映器件工作的状态, 成为理解钙钛矿太阳能电池的光电转换机理的有效途径. 本文主要介绍了钙钛矿太阳能电池内部空间电势分布与光电转换机制的研究进展, 集中讨论了通过开尔文探针力显微镜技术直接探测空间电势的光致变化和电致变化来揭示电荷载流子产生、分离、输运、复合等光电转换关键机制, 并对其在未来研究中存在的问题和挑战做了进一步的展望.Perovskite solar cells, as a promising next-generation photovoltaic technology for large-scale application, have demonstrated the advantages of high absorption coefficient, tunable bandgap, considerable photoelectric conversion efficiency and low-cost fabrication. However, the photoelectric conversion process within the device is still not understood clearly. One of the major reasons is that it is difficult to directly observe the space potential inside the device and its effect on the photogenerated charge carriers. The direct measurement and analysis of the space potential inside the device and the clarification of the intrinsic relationship between the space potential and the charge carrier micro-process under illumination and different electric field conditions can reveal the photoelectric conversion mechanism in depth, and thus providing the scientific research basis for the further development. Kelvin probe force microscopy (KPFM), a testing technology that is non-contact, can detect the space potential distribution without any damage to the device, demonstrating the great potential to unveil the working mechanism of perovskite solar cells accurately. Such a characterization method can work under vacuum condition. The KPFM combines Kelvin method of measuring contact potential difference with the scan probe microscopy to characterize internal carrier dynamic behavior with high resolution on a nanometer scale. The study of the spatial potential distribution of semiconductor device plays an important role in understanding the working mechanism of new perovskite solar cells. For example, under an open-circuit condition, the intensity and width of the electric field and space charge region can be obtained from the spatial potential distribution, and the bending direction of the energy band can be judged according to the increase or decrease of the potential. While in a short-circuit case, the generation and transport of charge carriers can be obtained. In this review, we mainly introduce the research progress of the space potential distribution and optoelectronic conversion mechanism in perovskite solar cells. The key mechanism of charge carrier generation, separation, transport and recombination are revealed by using KPFM to directly observe the space potential variations caused by light or electric field. We also prospect the issues and challenges in the future research.
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar
[3] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar
[4] Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar
[5] Lin K, Xing J, Quan L N, García de Arquer F P, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar
[6] Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y, Park N G 2017 Nature 550 87Google Scholar
[7] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar
[8] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar
[9] Yang M J, Zhang T Y, Schulz P, Li Z, Li G, Kim D H, Guo N J, Berry J J, Zhu K, Zhao Y X 2016 Nat. Commun. 7 12305
[10] Ye F, Chen H, Xie F X, Tang W T, Yin M S, He J J, Bi E B, Wang Y B, Yang X D, Han L Y 2016 Energy Environ. Sci. 9 2295Google Scholar
[11] Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun L D, Yan C H 2019 Science 363 265Google Scholar
[12] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Gratzel M, Han L 2015 Science 350 944Google Scholar
[13] Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963Google Scholar
[14] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Gratzel M 2017 Science 358 768Google Scholar
[15] Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar
[16] Luo D Y, Yang W Q, Wang Z P, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z J, Liu T H, Chen K, Ye F J, Wu P, Zhao L C, Wu J, Tu Y G, Zhang Y F, Yang X Y, Zhang W, Friend R H, Gong Q H, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar
[17] Tan H, Jain A, Voznyy O, Lan X, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar
[18] Wu T, Wang Y, Li X, Wu Y, Meng X, Cui D, Yang X, Han L 2019 Adv. Energy Mater. 9 1803766
[19] Jiang C S, Yang M J, Zhou Y Y, To B, Nanayakkara S U, Luther J M, Zhou W L, Berry J J, van de Lagemaat J, Padture N P, Zhu K, Al-Jassim M M 2015 Nat. Commun. 6 8397Google Scholar
[20] Kang Z, Si H, Shi M, Xu C, Fan W, Ma S, Kausar A, Liao Q, Zhang Z, Zhang Y 2019 Sci. China: Mater. 62 776
[21] Heiland G 1975 Berichte der Bunsengesellschaft für Physikalische Chemie 79 641
[22] Nonnenmacher M, O’Boyle M P, Wickramasinghe H K 1991 Appl. Phys. Lett. 58 2921Google Scholar
[23] Bergmann V W, Weber S A L, Javier Ramos F, Nazeeruddin M K, Grätzel M, Li D, Domanski A L, Lieberwirth I, Ahmad S, Berger R 2014 Nat. Commun. 5 5001Google Scholar
[24] Dymshits A, Henning A, Segev G, Rosenwaks Y, Etgar L 2015 Sci. Rep. 5 8704Google Scholar
[25] Cai M L, Ishida N, Li X, Yang X D, Noda T, Wu Y Z, Xie F X, Naito H, Fujita D, Han L Y 2018 Joule 2 296Google Scholar
[26] Chang J, Xiao J, Lin Z, Zhu H, Xu Q H, Zeng K, Hao Y, Ouyang J 2016 J. Mater. Chem. A 4 17464Google Scholar
[27] Do Kim H, Ohkita H, Benten H, Ito S 2016 Adv. Mater. 28 917Google Scholar
[28] Li M, Yan X, Kang Z, Liao X, Li Y, Zheng X, Lin P, Meng J, Zhang Y 2017 ACS Appl. Mater. Interfaces 9 7224Google Scholar
[29] Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, de Quilettes D W, Sadhanala A, Li W Z, Wang L D, Ginger D S, Friend R H, Snaith H J 2015 Nat. Commun. 6 10030
[30] Li W, Rothmann M U, Liu A, Wang Z Y, Zhang Y P, Pascoe A R, Lu J F, Jiang L C, Chen Y, Huang F Z, Peng Y, Bao Q L, Etheridge J, Bach U, Cheng Y B 2017 Adv. Energy Mater. 7 1700946
[31] Yun J S, Kim J, Young T, Patterson R J, Kim D, Seidel J, Lim S, Green M A, Huang S J, Ho-Baillie A 2018 Adv. Funct. Mater. 28 1705363
[32] Wang C, Xiao C, Yu Y, Zhao D, Awni R A, Grice C R, Ghimire K, Constantinou I, Liao W, Cimaroli A J, Liu P, Chen J, Podraza N J, Jiang C S, Al-Jassim M M, Zhao X, Yan Y 2017 Adv. Energy Mater. 7 1700414Google Scholar
[33] Xiao C X, Wang C L, Ke W J, Gorman B P, Ye J C, Jiang C S, Yan Y F, Al-Jassim M M 2017 ACS Appl. Mater. Interfaces 9 38373Google Scholar
[34] Lan F, Jiang M, Tao Q, Li G 2018 IEEE J. Photovolt. 8 125Google Scholar
-
图 2 (a)通过开尔文探针力显微镜技术探测正式介孔结构器件的空间电势; (b)电池空间电势光致变化[23]
Fig. 2. (a) Potential of mesoporous perovskite solar cells using Kelvin probe force microscopy (FTO, fluorine-doped tin oxide; HTM, hole-transport material); (b) space potential changes of perovskite solar cells under illumination (CPD, contact potential difference)[23].
图 3 (a)正式平面结构, 钙钛矿组分碘化铅过量和碘甲胺过量时对应的电池空间电势变化; (b)正式介孔结构、正式平面结构电池性能和理想因子与钙钛矿组分之间的关系[25]
Fig. 3. (a) Kelvin probe force microscopy characterizations of perovskite solar cells for the mesoporous structures using MAI- and PbI2-Rich precursors; (b) photovoltaic performance of mesoporous and planar perovskite solar cells and ideality factor on PbI2/CH3NH3I(MAI) mole ratio[25].
图 4 (a)正式平面结构钙钛矿电池在未加偏压下的空间电势分布; (b)正式平面结构在不同电压下的空间电势及电场分布情况; (c)正式介孔结构在不同电压下的空间电势及电场分布情况[19]
Fig. 4. (a) Potential distribution of mesoporous perovskite solar cells under Vb = 0 (TCO, transparent conducting oxide; PS, perovskite); (b) electrical potential and field profiling results on the planar device under different biases; (c) electrical potential and field profiling results on the optimized mesoporous device under different biases[19].
图 5 (a)二氧化锡正式平面结构钙钛矿电池在不同电压下的空间电势分布; (b) 100, (c) 150, (d) 200 ℃退火后处理的二氧化锡作为电荷传输材料的器件不同电压下的空间电势及电场分布情况[32]
Fig. 5. (a) Potential difference of planar device based on SnO2 electron transfer layer, under different biases (fluorine-dopled SnO2, FTO; electron selective layer, ESL; hole selective layer, HSL); (b) 100, (c) 150, (d) 200 ℃ electrical potential and field profiling results of the device based on low-temperature thermal annealing of SnO2 electron transfer layer[32].
-
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar
[3] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar
[4] Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar
[5] Lin K, Xing J, Quan L N, García de Arquer F P, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar
[6] Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y, Park N G 2017 Nature 550 87Google Scholar
[7] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar
[8] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar
[9] Yang M J, Zhang T Y, Schulz P, Li Z, Li G, Kim D H, Guo N J, Berry J J, Zhu K, Zhao Y X 2016 Nat. Commun. 7 12305
[10] Ye F, Chen H, Xie F X, Tang W T, Yin M S, He J J, Bi E B, Wang Y B, Yang X D, Han L Y 2016 Energy Environ. Sci. 9 2295Google Scholar
[11] Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun L D, Yan C H 2019 Science 363 265Google Scholar
[12] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Gratzel M, Han L 2015 Science 350 944Google Scholar
[13] Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963Google Scholar
[14] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Gratzel M 2017 Science 358 768Google Scholar
[15] Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar
[16] Luo D Y, Yang W Q, Wang Z P, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z J, Liu T H, Chen K, Ye F J, Wu P, Zhao L C, Wu J, Tu Y G, Zhang Y F, Yang X Y, Zhang W, Friend R H, Gong Q H, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar
[17] Tan H, Jain A, Voznyy O, Lan X, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar
[18] Wu T, Wang Y, Li X, Wu Y, Meng X, Cui D, Yang X, Han L 2019 Adv. Energy Mater. 9 1803766
[19] Jiang C S, Yang M J, Zhou Y Y, To B, Nanayakkara S U, Luther J M, Zhou W L, Berry J J, van de Lagemaat J, Padture N P, Zhu K, Al-Jassim M M 2015 Nat. Commun. 6 8397Google Scholar
[20] Kang Z, Si H, Shi M, Xu C, Fan W, Ma S, Kausar A, Liao Q, Zhang Z, Zhang Y 2019 Sci. China: Mater. 62 776
[21] Heiland G 1975 Berichte der Bunsengesellschaft für Physikalische Chemie 79 641
[22] Nonnenmacher M, O’Boyle M P, Wickramasinghe H K 1991 Appl. Phys. Lett. 58 2921Google Scholar
[23] Bergmann V W, Weber S A L, Javier Ramos F, Nazeeruddin M K, Grätzel M, Li D, Domanski A L, Lieberwirth I, Ahmad S, Berger R 2014 Nat. Commun. 5 5001Google Scholar
[24] Dymshits A, Henning A, Segev G, Rosenwaks Y, Etgar L 2015 Sci. Rep. 5 8704Google Scholar
[25] Cai M L, Ishida N, Li X, Yang X D, Noda T, Wu Y Z, Xie F X, Naito H, Fujita D, Han L Y 2018 Joule 2 296Google Scholar
[26] Chang J, Xiao J, Lin Z, Zhu H, Xu Q H, Zeng K, Hao Y, Ouyang J 2016 J. Mater. Chem. A 4 17464Google Scholar
[27] Do Kim H, Ohkita H, Benten H, Ito S 2016 Adv. Mater. 28 917Google Scholar
[28] Li M, Yan X, Kang Z, Liao X, Li Y, Zheng X, Lin P, Meng J, Zhang Y 2017 ACS Appl. Mater. Interfaces 9 7224Google Scholar
[29] Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, de Quilettes D W, Sadhanala A, Li W Z, Wang L D, Ginger D S, Friend R H, Snaith H J 2015 Nat. Commun. 6 10030
[30] Li W, Rothmann M U, Liu A, Wang Z Y, Zhang Y P, Pascoe A R, Lu J F, Jiang L C, Chen Y, Huang F Z, Peng Y, Bao Q L, Etheridge J, Bach U, Cheng Y B 2017 Adv. Energy Mater. 7 1700946
[31] Yun J S, Kim J, Young T, Patterson R J, Kim D, Seidel J, Lim S, Green M A, Huang S J, Ho-Baillie A 2018 Adv. Funct. Mater. 28 1705363
[32] Wang C, Xiao C, Yu Y, Zhao D, Awni R A, Grice C R, Ghimire K, Constantinou I, Liao W, Cimaroli A J, Liu P, Chen J, Podraza N J, Jiang C S, Al-Jassim M M, Zhao X, Yan Y 2017 Adv. Energy Mater. 7 1700414Google Scholar
[33] Xiao C X, Wang C L, Ke W J, Gorman B P, Ye J C, Jiang C S, Yan Y F, Al-Jassim M M 2017 ACS Appl. Mater. Interfaces 9 38373Google Scholar
[34] Lan F, Jiang M, Tao Q, Li G 2018 IEEE J. Photovolt. 8 125Google Scholar
计量
- 文章访问数: 14824
- PDF下载量: 462
- 被引次数: 0